
ORIGINAL ARTICLE

The microbiome of professional athletes differs
from that of more sedentary subjects in composition
and particularly at the functional metabolic level
Wiley Barton,1,2,3 Nicholas C Penney,4,5 Owen Cronin,1,3 Isabel Garcia-Perez,4

Michael G Molloy,1,3 Elaine Holmes,4 Fergus Shanahan,1,3 Paul D Cotter,1,2

Orla O’Sullivan1,2

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
gutjnl-2016-313627).
1Alimentary Pharmabiotic
Centre Microbiome Institute,
University College Cork,
National University of Ireland,
Cork, Ireland
2Teagasc Food Research
Centre, Cork, Ireland
3Department of Medicine,
University College Cork,
National University of Ireland,
Cork, Ireland
4Section of Biomolecular
Medicine, Division of
Computational Systems
Medicine, Department of
Surgery and Cancer, Imperial
College London, London, UK
5Division of Surgery,
Department of Surgery and
Cancer, Imperial College
London, London, UK

Correspondence to
Professor Fergus Shanahan,
APC Microbiome Institute,
University College Cork,
National University of Ireland,
Cork, T12 DC4A Ireland;
f.shanahan@ucc.ie

Received 20 December 2016
Revised 31 January 2017
Accepted 6 March 2017

To cite: Barton W,
Penney NC, Cronin O, et al.
Gut Published Online First:
[please include Day Month
Year] doi:10.1136/gutjnl-
2016-313627

ABSTRACT
Objective It is evident that the gut microbiota and
factors that influence its composition and activity effect
human metabolic, immunological and developmental
processes. We previously reported that extreme physical
activity with associated dietary adaptations, such as that
pursued by professional athletes, is associated with
changes in faecal microbial diversity and composition
relative to that of individuals with a more sedentary
lifestyle. Here we address the impact of these factors on
the functionality/metabolic activity of the microbiota
which reveals even greater separation between exercise
and a more sedentary state.
Design Metabolic phenotyping and functional
metagenomic analysis of the gut microbiome of
professional international rugby union players (n=40)
and controls (n=46) was carried out and results were
correlated with lifestyle parameters and clinical
measurements (eg, dietary habit and serum creatine
kinase, respectively).
Results Athletes had relative increases in pathways (eg,
amino acid and antibiotic biosynthesis and carbohydrate
metabolism) and faecal metabolites (eg, microbial
produced short-chain fatty acids (SCFAs) acetate,
propionate and butyrate) associated with enhanced
muscle turnover (fitness) and overall health when
compared with control groups.
Conclusions Differences in faecal microbiota between
athletes and sedentary controls show even greater
separation at the metagenomic and metabolomic than at
compositional levels and provide added insight into the
diet–exercise–gut microbiota paradigm.

INTRODUCTION
Regular exercise challenges systemic homeostasis
resulting in a breadth of multiorgan molecular and
physiological responses, including many that centre
on immunity, metabolism and the microbiome–
gut–brain axis.1–5 Exercise exhibits systemic and
end-organ anti-inflammatory effects as well as con-
tributing to more efficient carbohydrate metabol-
ism, in addition to trophic effects at the level of the
central nervous system.6 7 In fact, increasing phys-
ical activity offers an effective treatment and pre-
ventative strategy for many chronic conditions in
which the gut microbiome has been implicated.8–10

Conversely, a sedentary lifestyle is a major

contributing factor to morbidity in developed
Western society and is associated with heightened
risk of numerous diseases of affluence, such as
obesity, diabetes, asthma and cardiovascular
disease (CVD).11–14 Recent evidence supports an
influential role for the gut microbiome in these
diseases.15–23

The concept that regular exercise and sustained
levels of increased physical activity foster or assist
the maintenance of a preferential intestinal micro-
biome has recently gained momentum and

Significance of this study

What is already known on this subject?
▸ Taxonomic and functional compositions of the

gut microbiome are emerging as biomarkers of
human health and disease.

▸ Physical exercise and associated dietary
adaptation are linked with changes in the
composition of the gut microbiome.

▸ Metabolites such as short-chain fatty acids
(SCFAs) have an impact on a range of health
parameters including immunity, colonic
epithelial cell integrity and brain function.

What are the new findings?
▸ Our original observation of differences in gut

microbiota composition in elite athletes is
confirmed and the separation between athletes
and those with a more sedentary lifestyle is
even more evident at the functional or
metabolic level. Microbial-derived SCFAs are
enhanced within the athletes.

How might it impact on clinical practice
in the foreseeable future?
▸ The findings provide new evidence supporting

the link between exercise and metabolic health.
The findings provide a platform for the rational
design of diets for those engaged in vigorous
exercise. The identification of specific
alterations in the metabolic profile of subjects
engaged in high levels of exercise provides
insight necessary for future efforts towards
targeted manipulation of the microbiome.
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interest.24–29 Previously, using 16S rRNA amplicon sequencing,
we demonstrated taxonomic differences in gut microbiota
between an elite athlete cohort of international-level rugby
players and a group of age-matched high (>28 kg/m2) and low
(<25 kg/m2) body mass index (BMI) controls.26 This analysis
illustrated a significantly greater intestinal microbial diversity
among the athletes compared with both control groups. This
taxonomic diversity significantly correlated with exercise and
dietary protein consumption. However, the possibility existed
that these differences did not equate to differences at a func-
tional level. Here, we re-examine the microbiome in these parti-
cipants by whole metagenome shotgun sequencing to provide
deeper insight into taxonomic composition and functional
potential and by complementary metabolic phenotyping ana-
lyses of host-derived and microbial-derived (urine and faecal,
respectively) metabolic profiles. This analysis shows that the dif-
ferences in the gut microbiota between athletes and controls is
even more pronounced at the functional metabolic level than at
the compositional level as previously reported and provides
further rationale for prospective controlled studies to unravel
the relationship between diet, exercise and the gut microbiome.

RESULTS
The study groups comprise professional male athletes (n=40)
and healthy controls (n=46).26 To better represent the variabil-
ity of BMI in the athletes, controls were classified as either low
BMI (n=22, BMI≤25.2) or high BMI (n=24, BMI≥26.5).
Participants made no report of GI distress or alterations of GI
transit time throughout the course of the initial study.

Functional structure of the enteric microbiome correlates
with athletic state
Functional metagenomic analysis of faecal samples allowed for
the prediction of the operational potential of each individual’s
microbiota. In total, 19 300 taxonomically linked metabolic
pathways were identified in at least one individual. Comparison
of phylogenetic constructions derived from the 16S rRNA
amplicon data of our previous study and the functional data of

this present report reveals a greater level of identification at
higher levels of taxonomy (eg, phylum) for 16S sequences,26

while the metagenomic data had greater fidelity and superior
resolution of lower levels of taxonomy (eg, species) (figure 1).
Consistent with previous results, the microbiota of the athletes
were significantly more diverse than that of both the low-BMI
and high-BMI control groups at the functional level (figure 2A).
Furthermore, our previous findings of an enrichment of
Akkermansia in athletes was corroborated by the presence of sig-
nificantly higher proportions of metabolic pathways associated
with this genus in athletes when compared with high-BMI con-
trols (p<0.001). Correlation analysis revealed that, of the total
19 300 pathways, 98 were significantly altered between the
three cohorts (p<0.05) (see online supplementary table S1).
Subsequently, large-scale functional dissimilarity between ath-
letes and controls was determined and distinct patterns of
pathway composition between groups were revealed (see online
supplementary figure S1A). This functional distinction remained
true whether applied to total pathway data or to the statistically
significant subset of pathways (see online supplementary figure
S1B). Correlation of pathways present in at least one member
from both cohorts further exemplified the uniformity of the ath-
letes and the division between the athletes and control groups
(see online supplementary figure S1C). Separation according to
group membership was further illustrated through principal
coordinate analysis (PCoA), with statistical support of the sig-
nificant separation between the athletes and both control groups
(p<0.05) (figure 2B). This was also the case for the statistically
significant subset of pathways (see online supplementary figure
S1D). Principal component analysis (PCA) supplemented with a
correspondence analysis and k-nearest neighbour semisupervised
learning approach cast further light (ie, visualisation of robustly
defined class associations of specific individuals within the
groups) on the clustering of participants within and between
cohorts (see online supplementary figure S1E).

Pathways exhibiting statistically significant variation between
the athletes and both control groups were organised accord-
ing to MetaCyc metabolic pathway hierarchy classification

Figure 1 Comparison of phylogenetic
constructions from metagenomic and
16S rRNA gene sequencing sourced
from all participants. Phylogenetic
trees derived from (A) metagenomic
sequencing and (B) 16S rRNA
amplicon sequencing. Taxonomic levels
are assigned from centre out with
kingdom-level assignment in centre
and strain-level assignment in outer
most ring. Dark blue radial highlights
correspond to poorly identified
taxonomies (ie, ‘unknown’ and
‘unassigned’ database entries).
Number of assignments at each level
of phylogeny is displayed below the
respective graph. Taxonomic trees
derived from the two sequencing
approaches illustrate an advantage of
metagenomic sequencing in the
number of predictions of lower
taxonomic levels and the frequency of
full identification of taxa, while 16S
rRNA sequencing grants greater insight
of high-level phylogenies within the
population.
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(34 metabolic categories), highlighting a number of differences
(figure 3A and online supplementary table S2). Distinct cluster-
ing patterns were observed within each cohort, with the
high-BMI control group having the lowest average abundance
scores across 31 metabolic pathway categories (the exceptions
being vitamin biosynthesis (VB), lipid biosynthesis (LB) and
amino acid biosynthesis (AAB) categories). The athlete group
had the highest mean abundance across 29 of the 34 metabolic
categories (eg, carbohydrate biosynthesis, cofactor biosynthesis
and energy metabolism) (see online supplementary table S2).

Numerous statistically significant (p<0.05) associations were
identified between pathway abundances and serum creatine
kinase (CK)—an enzymatic marker of muscle activity (IU/L),
total bilirubin (IU/L) and dietary macronutrient intake of
protein (g/day), fibre (g/day), carbohydrates (g/day), sugars
(g/day), starch (g/day), fat (g/day) and total energy (KJ/day)
(figure 3B). Each group was represented by distinct association
profiles of the correlation between clinical measurements and
metagenomic pathways. Dietary factors, sugars and other carbo-
hydrates, as well as energy intake, provide the majority of the
correlations for the control groups, whereas the athlete group

was predominantly correlated with CK, total bilirubin and total
energy intake. Of the total number of metabolic pathways with
associations to the clinical data from all three groups (10 760;
data not shown), relevant pathways related to the production of
secondary metabolites, cofactors and short-chain fatty acids
(SCFAs) were identified (eg, biotin biosynthesis and pyruvate
fermentation to butanoate).

Distinct differences between host and microbial metabolites
in athletes and controls
A combination of multiplatform metabolic phenotyping and
multivariate analysis based on orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to compare urine and
faecal samples from athletes and controls. The cross-validated
(CV) OPLS-DA models show strong differences between athletes
and controls in urine samples by proton nuclear magnetic reson-
ance (1H-NMR) analysis (R2Y=0.86, Q2Y=0.60, figure 2C),
hydrophilic interaction ultra-performance liquid chromatog-
raphy mass spectroscopy (HILIC UPLC-MS) positive mode ana-
lysis (R2Y=0.85, Q2Y=0.74, online supplementary figure S2A)
and reversed-phase UPLC-MS (RP UPLC-MS) in both positive

Figure 2 Group-wise comparison of microbial metagenomic and metabolomic profiles. (A) Shannon index of diversity for metabolic pathways from
all three groups. Pathway diversity is increased in the athlete group when compared with low-body mass index (BMI) and high-BMI controls.
Diversity measures are statistically significant between low-BMI and athlete groups (p<0.049), with statistical significance between all groups
(Kruskal-Wallis p<0.05). (B) Principle coordinate analysis of Bray-Curtis compiled distance matrix of all microbial metabolic pathway relative
abundances. Groups show significant variation from one another (Adonis PERMANOVA p<0.05). Cross-validated orthogonal partial least squares
regression discriminant analysis (OPLS-DA) of full nuclear magnetic resonance (1H-NMR) spectra from urine (R2Y=0.86, Q2Y=0.60) (C) and faecal
water (R2Y=0.86, Q2Y=0.52) (D) samples. OPLS-DA displays robust separation between athletes and controls. Models comprise 1 predictive (tcv[1])
and 1 orthogonal (tocv[1]) principal component.
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and negative mode analysis (R2Y=0.83, Q2Y=0.73 and
R2Y=0.83, Q2Y=0.67, online supplementary figure S2B,C
respectively). Likewise, the CV-OPLS-DA models comparing
faecal samples, although weaker than the urine models, reveal
significant differences between athletes and controls by 1H-NMR
analysis (R2Y=0.86, Q2Y=0.52, figure 2D) and HILIC
UPLC-MS positive mode analysis (R2Y=0.65, Q2Y=0.34, online
supplementary figure S2D).

The loadings of the pairwise OPLS-DA models were used to
identify metabolites discriminating between the two classes.
Athletes’ 1H-NMR metabolic phenotypes were characterised by
higher levels of trimethylamine-N-oxide (TMAO), L-carnitine,
dimethylglycine, O-acetyl carnitine, proline betaine, creatine,
acetoacetate, 3-hydroxy-isovaleric acid, acetone, N-methylnicotinate,
N-methylnicotinamide, phenylacetylglutamine (PAG) and
3-methylhistidine in urine samples and higher levels of
propionate, acetate, butyrate, trimethylamine (TMA), lysine and
methylamine in faecal samples, relative to controls. Athletes were
further characterised by lower levels of glycerate, allantoin and
succinate and lower levels of glycine and tyrosine relative to
controls in urine and faecal samples, respectively (see online
supplementary table S3).

While numerous metabolites discriminated significantly
between athletes and controls with RP UPLC-MS positive (490)

and negative (434) modes for urine, as well as with HILIC
UPLC-MS positive mode for urine (196) and faecal water (3),
key metabolites were structurally identified using the strategy
described below. UPLC-MS analyses revealed higher urinary
excretion of N-formylanthranilic acid, hydantoin-5-propionic
acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid
(CMPF), CMPF glucuronide, trimetaphosphoric acid, acetyl-
carnitine (C2), propionylcarnitine (C3), isobutyrylcarnitine
(C4), 2-methylbutyroylcarnitine (C5), hexanoylcarnitine (C6),
C9:1-carnitine, L-valine, nicotinuric acid, 4-pyridoxic acid
and creatine in athletes relative to controls. Levels of glutamine,
7-methylxanthine, imidazoleacetic acid, isoquinoline/quinolone
were lower in athletes’ urinary samples relative to controls. In
addition, 16 unknown glucuronides were lower in the athlete
samples (see online supplementary table S4).

SCFA levels in faeces measured by targeted gas chromatography–
mass spectrometry (GC-MS) showed significantly higher levels of
acetate (p<0.001), propionate (p<0.001), butyrate (p<0.001) and
valerate (p=0.011) in athletes relative to controls. Isobutyrate and
isovalerate did not differ significantly between the groups
(figure 4B and online supplementary table S5). Furthermore,
concentrations of propionate strongly correlated to protein intake,
while butyrate was shown to have a strong association with intake
of dietary fibre (see online supplementary table S6).

Figure 3 Group variation of microbial metabolic function and associations between pathways and clinical and dietary variables. (A) Mean relative
abundance values of statistically significant (Kruskal-Wallis p<0.05) metabolic pathways binned according to categories of metabolic function. (B)
Number of metabolic pathways significantly (Benjamini-Hochberg corrected p<0.05) correlated with dietary constituents and blood serum
metabolites. BMI, body mass index.

4 Barton W, et al. Gut 2017;0:1–9. doi:10.1136/gutjnl-2016-313627

Gut microbiota

group.bmj.com on March 30, 2017 - Published by http://gut.bmj.com/Downloaded from 

http://dx.doi.org/10.1136/gutjnl-2016-313627
http://dx.doi.org/10.1136/gutjnl-2016-313627
http://dx.doi.org/10.1136/gutjnl-2016-313627
http://dx.doi.org/10.1136/gutjnl-2016-313627
http://dx.doi.org/10.1136/gutjnl-2016-313627
http://dx.doi.org/10.1136/gutjnl-2016-313627
http://gut.bmj.com/
http://group.bmj.com


Correlating metabonomic and metagenomic results
Correlation analysis between targeted measurements of SCFAs
and taxonomic data from 16S rRNA sequencing revealed a
number of correlations that remained significant following cor-
rection; Roseburia was positively correlated with acetate
(p=0.004) and butyrate (p=0.018) while Family XIII Incertae
Sedis was positively correlated with isobutyrate (p<0.001), iso-
valeric acid (p<0.001) and valeric acid (p=0.008) (figure 4A
and online supplementary table S7).

SCFAs were also correlated with pathway relative abundances,
with all SCFAs associating with considerably more pathways in
the athletes versus the controls (figure 4C). Multiple statistically
significant (7948) (p<0.05) correlations between the metabolic
pathways and SCFAs were identified (see online supplementary
table S8). Two distinct blocks of proportionately discriminant
correlations were observed with isobutyric and isovaleric acids,
which were more abundant in the athletes, while acetic and
butyric acids were proportionately more abundant in controls.
Correlations of the SCFA concentrations to pathways related to
fermentation, biosynthesis or modification of fatty acids were
identified among the numerous other associations (see online
supplementary table S8 for complete list). Additional correla-
tions of metabolic pathways against well-identified metabolites
detected from both faecal water (figure 5A, C) and urine
(figure 5B, D) presented numerous significant associations
(6186 and 13 412, respectively; data not shown) (p<0.05).

It was also observed that 16 genera correlated with 12 metabo-
lites (see online supplementary table S9).

DISCUSSION
The results confirm enhancement of microbial diversity in ath-
letes compared with controls. Supporting previous insights into
the beneficial influence of physical exercise and associated diet
on the compositional structure of the gut microbiota,25 26 30

this study has extended the paradigm to include links between
physical fitness and the functional potential of the gut micro-
biota and its metabolites. It must be conceded that some ath-
letes, although fit, may not necessarily be more healthy.31

Athletes have an increased abundance of pathways that—
given an equivalent amount of expression activity—could be
exploited by the host for potential health benefit, including bio-
synthesis of organic cofactors and antibiotics, as well as carbo-
hydrate degradation and secondary metabolite metabolism.32

Furthermore, athletes have an enriched profile of SCFAs, previ-
ously associated with numerous health benefits and a lean
phenotype.33–35 While interpretation of SCFA data can be diffi-
cult as levels represent a combination of SCFA production and
host-absorption rates, it is notable that, as previously presented,
the athletes’ diet maintained significantly higher quantities of
fibre intake.26 This along with an increased number of detected
SCFA pathways in the athletes would be conducive to an
enhanced rate of SCFA production36

Figure 4 Athletes display a profile of short-chain fatty acids (SCFAs) that alters from that of the controls. (A) Heat map of bacterial taxa (family,
genus and species level) that correlate with faecal short-chain fatty acid levels using Spearman’s correlation. Cool colours represent positive
correlations; hot colours represent negative correlations (r). All taxa shown had a correlation p value<0.01. Those marked with * represent
correlations with a false discovery rate <0.01 after Benjamini-Hochberg multiple testing corrections. (B) Median concentrations of GC-MS-derived
faecal SCFA. Quantitative analysis of SCFAs in faecal samples shows significant increase in measured concentrations of acetate, propionate, butyrate
and valerate in athletes. Error bars represent 95% CIs. (C) Quantification of statistically relevant correlations of metabolic pathways to
GC-MS-derived faecal SCFA concentrations (μM). BMI, body mass index; GC-MS, gas chromatography–mass spectrometry.
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Figure 5 Distinctive association profiles of metabolic pathways to metabolites in athletes and controls. (A) Significant correlations of faecal water-derived metabolites and metabolic pathways,
represented by number of correlations for each metabolite. (B) Urine metabolites significantly correlated to pathways and displayed as number of correlations. (C) Significant correlations shown in (A)
displayed as proportions of total associations. (D) Correlations presented in (B) given as proportions of total associations. BMI, body mass index; PAG, phenylacetylglutamine; TMAO,
trimethylamine-N-oxide.
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It was noted that athletes excreted proportionately higher
levels of the metabolite TMAO, an end product metabolite
of dietary protein degradation. Elevated TMAO has been
observed in patients with cardiovascular disease and atheroscler-
osis, highlighting a potential downside to increased protein
intake.15–17 22 37 However, TMAO is also found in high levels
in the urine of Japanese populations,38 who do not have high
risk for CVD. Similarly to these populations, the athletes’ diet
contained a significantly greater proportion of fish. Our current
understanding of the implications of this result remains limited
and requires elaboration in future studies. Furthermore,
pathway abundance in a metagenome merely reflects functional
potential and not necessarily increased expression in situ.

Variance of metagenomic composition between athletes and
controls was exemplified with unique pathway–pathway correla-
tions between the two groups. Analysis of categorically arranged
pathway abundances within the separate cohorts provided add-
itional insight into the previously described dichotomy between
the microbiota of athletes and high-BMI controls. The two
groups displayed distinct structures of functional capacity, separ-
ately oriented to operate under the different physiological
milieu of the two groups. Notably, from a functional perspec-
tive, the microbiota of the low-BMI group was more similar to
the athletes. The low-BMI controls were generally engaged in a
modestly active lifestyle, reflected by their leanness and
increased levels of CK. It is speculative but not implausible that
moderate improvements in physical activity for overweight and
obese individuals may confer the beneficial metabolic functions
observed within the athlete microbiome.

Dietary contributions to the functional composition of the
enteric microbial system are also evident in our study. The rela-
tive abundances of pathways related to fundamental metabolic
function—AAB, VB and LB—were higher on average within the
high-BMI control group when compared with the athlete group.
The mechanisms behind these differences are unclear and might
reflect chronic adaptation of the athlete gut microbiome; pos-
sibly due to a reduced reliance on the corresponding biosyn-
thetic capacities of their gut microbiota. On the contrary, the
athlete microbiome presents a functional capacity that is primed
for tissue repair and to harness energy from the diet with
increased capacity for carbohydrate, cell structure and nucleo-
tide biosynthesis, reflecting the significant energy demands and
high cell-turnover evident in elite sport.

Remarkably, our examination of pathway correlation to
dietary macronutrients and plasma CK, as a biomarker of exer-
cise,39 is suggestive of an impact of physical activity on the use
of dietary nutrients by the microbiota of the gut. Comparing
athletes to both high-BMI and low-BMI controls, a greater
number of pathways correlating to specific macronutrients with
the controls suggests a shift in the dynamics of these varied
metabolic functions. The impact of the athletes’ increased
protein intake compared with both control groups was evident
in the metabolomic phenotyping results. By-products of dietary
protein metabolism (mostly by microbes) including TMAO,
carnitines, TMA, 3-CMPF and 3-hydroxy-isovaleric acid are all
elevated in the athlete cohort. Of particular interest is
3-hydroxy-isovaleric acid (potentially from egg consumption),
which has been demonstrated to have efficacy for inhibiting
muscle wasting when used in conjunction with physical
exercise.40 41 The compound is also commonly used as a sup-
plement by athletes to increase exercise-induced gains in muscle
size, muscle strength and lean body mass, reduce
exercise-induced muscle damage and speed recovery from high-
intensity exercise.41 Numerous metabolites associated with

muscle turnover, creatine, 3-methylhistidine and L-valine, and
host metabolism, carnitine, are elevated in the athlete groups.
Metabolites derived from vitamins and recovery supplements
common in professional sports, including glutamine, lysine, 4-
pyridoxic acid and nicotinamide, are also raised in the athlete
group. It is notable that PAG, a microbial conversion product of
phenylalanine, has been associated with a lean phenotype and is
increased in the athletes.42 Furthermore, PAG positively corre-
lates with the genus Erysipelotrichaceae incertae sedis, which we
have previously noted to be present in relatively higher propor-
tions in the athlete group compared with both control groups.
PAG is the strongest biomarker postbariatric surgery, where it is
associated with an increase in the relative proportions of
Proteobacteria as observed here in the athlete group. Within the
SCFAs, two distinct clusters were observed; acetic acid, propio-
nic acid and butyric acid correlate with dietary contributors
(fibre and protein), while isobutyric acid, isovaleric acid and
valeric acid correlate with microbial diversity. The same clusters
are observed when correlating with individual taxa, in support
of previously observed links between SCFAs and numerous
metabolic benefits and a lean phenotype.33–35

Our ongoing work in this area with non-athletes engaging in
a structured exercise regime looks to further explore compo-
nents of the exercise and diet–microbiome paradigm, which,
along with this study, may inform the design of exercise and
fitness programmes, including diet design in the context of opti-
mising microbiota functionality for both athletes and the
general population.

MATERIALS AND METHODS
Study population
Elite professional male athletes (n=40) and healthy controls
(n=46) matched for age and gender were enrolled in 2011 as
previously described in the study.26 Due to the range of physi-
ques within a rugby team (player position dictates need for a
variety of physical constitutions, ie, forward players tend to
have larger BMI values than backs, often in the overweight/
obese range) the recruited control cohort was subdivided into
two groups. To more completely include control participants,
the BMI parameter for group inclusion was adjusted to BMI
≤25.2 and BMI ≥26.5 for the low-BMI and high-BMI groups,
respectively. Approval for this study was granted by the Cork
Clinical Research Ethics Committee.

Acquisition of clinical, exercise and dietary data
Self-reported dietary intake information was accommodated by
a research nutritionist within the parameters of a food frequency
questionnaire in conjunction with a photographic food atlas as
per the initial investigation.26 Fasting blood samples were col-
lected and analysed at the Mercy University Hospital clinical
laboratories, Cork. As the athletes were involved in a rigorous
training camp, we needed to assess the physical activity levels of
both control groups. To determine this, we used an adapted
version of the EPIC-Norfolk questionnaire.43 Creatine kinase
levels were used as a proxy for level of physical activity across
all groups.

Preparation of metagenomic libraries
DNA derived from faecal samples was extracted and purified
using the QIAmp DNA Stool Mini Kit (cat. no 51 504) prior to
storage at −80°C. DNA libraries were prepared with the
Nextera XT DNA Library Kit (cat. no FC-131-1096) prior to
processing on the Illumina HiSeq 2500 sequencing platform
(see online supplementary methods for further detail).
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Metagenomic statistical and bioinformatic analysis
Delivered raw FASTQ sequence files were quality checked as
follows: contaminating sequences of human origin were first
removed through the NCBI Best Match Tagger (BMTagger).
Poor-quality and duplicate read removal, as well as trimming
was implemented using a combination of SAM (sequence align-
ment map) and Picard tools. Processing of raw sequence data
produced a total of 2 803 449 392 filtered reads with a mean
read count of 32 598 248.74 (±10 639 447 SD) per each of the
86 samples. These refined reads were then subjected to func-
tional profiling by the most recent iteration of the Human
Microbiome Project Unified Metabolic Analysis Network
(HUMAnN2 V.0.5.0) pipeline.44 The functional profiling per-
formed by HUMAnN2 composed tabulated files of microbial
metabolic pathway abundance and coverage derived from the
Metacyc database.45 Microbial pathway data were statistically
analysed in the R software environment (V.3.2.2) (for further
details see online supplementary methods) (R Development
Core Team. R: A Language and Environment for Statistical
Computing (R Foundation for Statistical Computing, Vienna,
2012). 2015. http://www.R-project.org). All presented p values
were corrected for multiple comparisons using the
Benjamini-Hochberg false discovery rate (pFDR) method.46

Metabolic profiling
Urine and faecal samples were prepared for metabonomic ana-
lysis as previously described.47 48 Using established methods,
urine samples underwent 1H-NMR, RP and HILIC chromatog-
raphy profiling experiments. Faecal samples underwent
1H-NMR, HILIC and bile acid UPLC-MS profiling experiments
and GC-MS-targeted SCFA analysis.48–50

After data preprocessing,51 the resulting 1H-NMR and
LC-MS data sets were imported into SIMCA 14.1 (Umetrics) to
conduct multivariate statistical analysis. PCA, followed by
OPLS-DA, was performed to examine the data sets and to
observe clustering in the results according to the predefined
classes. The OPLS-DA models in this study were established
based on one PLS component and one orthogonal component.
Unit variance scaling was applied to 1H-NMR data, Pareto
scaling was applied to MS data. The fit and predictability of the
models obtained were determined by the R2Y and Q2Y values,
respectively. Significant metabolites were obtained from LC-MS
OPLS-DA models through division of the regression coefficients
by the jack-knife interval SE to give an estimate of the t-statistic.
Variables with a t-statistic ≥1.96 (z-score, corresponding to the
97.5 percentile) were considered significant. Significant metabo-
lites were obtained from 1H-NMR OPLS-DA models after inves-
tigating correlations with correlation coefficients values higher
than 0.4. Univariate statistical analysis (Mann-Whitney U test)
was used to examine the SCFA data set. p values were adjusted
for multiple testing using the pFDR method.

Confirmation of metabolite identities in the NMR data was
obtained using 1D 1H NMR and 2D 1H-1H NMR and 1H-13C
NMR experiments. In addition, statistical tools such as
SubseT Optimization by Reference Matching (STORM) and
Statistical TOtal Correlation SpectroscopY (STOCSY) were also
applied.52 53 Confirmation of metabolites identities in the
LC-MS data was obtained using tandem MS (MS/MS) on
selected target ions.

Metabolite identification was characterised by a level of
assignment (LoA) score that describes how the identification
was made.54 The levels used were as follows: LoA 1: identified
compound, confirmed by comparison to an authentic chemical

reference. LoA 2: MS/MS precursor and product ions or 1D
+2D NMR chemical shifts and multiplicity match to a reference
database or literature to putatively annotate compound. LoA 3:
chemical shift (δ) and multiplicity matches a reference database
to tentatively assign the compound (for further details see
online supplementary methods).
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