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The human gut microbiome is linked to many states of human 
health and disease1. The metabolic repertoire of the gut micro-
biome is vast, but the health implications of these bacterial 
pathways are poorly understood. In this study, we identify a 
link between members of the genus Veillonella and exercise 
performance. We observed an increase in Veillonella relative 
abundance in marathon runners postmarathon and isolated a 
strain of Veillonella atypica from stool samples. Inoculation of 
this strain into mice significantly increased exhaustive tread-
mill run time. Veillonella utilize lactate as their sole carbon 
source, which prompted us to perform a shotgun metage-
nomic analysis in a cohort of elite athletes, finding that every 
gene in a major pathway metabolizing lactate to propionate is 
at higher relative abundance postexercise. Using 13C3-labeled 
lactate in mice, we demonstrate that serum lactate crosses 
the epithelial barrier into the lumen of the gut. We also show 
that intrarectal instillation of propionate is sufficient to repro-
duce the increased treadmill run time performance observed 
with V. atypica gavage. Taken together, these studies reveal 
that V. atypica improves run time via its metabolic conversion 
of exercise-induced lactate into propionate, thereby identify-
ing a natural, microbiome-encoded enzymatic process that 
enhances athletic performance.

Human microbiome studies have generally examined indi-
viduals who are ‘healthy’ or diseased and identified features of  
the microbiome associated with these states2–4. Athlete microbi-
omes have been found to contain distinct microbial compositions  
defined by elevated abundances of Veillonellaceae, Bacteroides, 
Prevotella, Methanobrevibacter or Akkermansia5,6. These studies 
show that exercise is associated with changes in microbiome com-
position, although the effects of these microbial genera on pheno-
type remain unknown.

To identify gut bacteria associated with athletic performance and 
recovery states, we recruited athletes (n = 15) who ran in the 2015 

Boston Marathon, along with a set of sedentary controls (n = 10), 
and conducted 16S ribosomal DNA (rDNA) sequencing on approxi-
mately daily samples collected up to one week before and one week 
after marathon day (n = 209 samples; Supplementary Tables 1 and 2).  
Phylum-level relative abundance partitioned by individual, time 
(−5 to +5 d in relation to running the marathon), and whether the 
participant was an athlete (Fig. 1a) showed that, at this high-level 
taxonomic view, any orthogonal differences were likely to be due to 
variation at the level of the individual. The bacterial genus Veillonella 
was the most differentially abundant microbiome feature between 
pre- and postexercise states (Supplementary Table 2). There was a 
significant difference in relative Veillonella abundance (P = 0.02, 
Wilcoxon rank-sum test with continuity correction) between sam-
ples collected before and after exercise (Fig. 1b). To validate the sig-
nificance of the association between Veillonella and postmarathon 
state, we constructed a series of generalized linear mixed-effect 
models (GLMMs) to predict Veillonella relative abundance in the 
marathon participants (Fig. 1c and Methods). Subsequently, signifi-
cance was calculated for all of the coefficients included in the GLMM 
(Fig. 1d, Wald Z-tests), revealing that no coefficients were significant 
except time in relation to the marathon in days (P = 0.0014, Wald 
Z-test; n = 15). Both leave-one-out cross-validation (LOOCV) and 
iterative permutation of labels were conducted as part of the GLMM 
analysis (Extended Data Fig. 1 and Methods). Additionally, it appears 
that Veillonella is more prevalent among runners than non-runners 
(Extended Data Fig. 2), although this was not statistically significant. 
These correlations raise the question of whether there is a causal link 
between Veillonella and marathon runners’ performance, but no 
conclusions can be made without proper validation.

To assess whether there are any potential benefits of Veillonella 
on performance in an animal exercise model, we designed an AB/
BA crossover mouse experiment spanning 2 weeks, consisting 
of a control group (Lactobacillus bulgaricus gavage; n = 16) and a  
treatment group (Veillonella atypica gavage; n = 16), with a  
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treatment/control crossover happening between weeks (n = 32 
mice in total). L. bulgaricus was chosen as a control due its inability 
to catabolize lactate, thus mimicking the bacterial load but with-
out impacting lactate metabolism7. The Veillonella strain used, 
Veillonella atypica, was directly isolated from one of the marathon 
runners. Mice were administered either V. atypica or L. bulgaricus 
and run to exhaustion 5 h later (Methods). In aggregate, on both 
sides of the crossover, mice gavaged with V. atypica had statistically 
significantly longer maximum run times than mice gavaged with  
L. bulgaricus (P = 0.02, paired t-test; Fig. 2a, Supplementary Table 3 

and Extended Data Fig. 3). Both LOOCV and iterative permutation 
of labels were conducted as part of the GLMM analysis (Extended 
Data Fig. 3 and Methods). Per-mouse run times overlaid on the 
GLMM fits (Extended Data Fig. 4), as well as the difference between 
the maximum run times in L. bulgaricus versus V. atypica gavage, 
showed a distinction between ‘responders’ and ‘non-responders’ 
to V. atypica gavage (Extended Data Fig. 5). Mice treated with  
V. atypica ran, on average, 13% longer than the control group (Fig. 2a).  
Testing the significance of coefficients in the GLMM for their 
contribution to treadmill run time (Wald Z-test) showed that the 
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Fig. 1 | Gut Veillonella abundance is significantly associated with marathon running. a, Phylum-level relative abundance in marathon runners, partitioned 
by individual and time (−5 to +5 d in relation to running the marathon (t0), where negative values are premarathon and positive values are postmarathon), 
showing few global differences in composition. b, Veillonella relative abundance at the genus level, partitioned by individual and time (−5 to +5 d in 
relation to running the marathon), showing that there is a significant difference in Veillonella relative abundance (P = 0.02, two-sided Wilcoxon rank-sum 
test with continuity correction; n = 15 individuals) between samples collected before and after exercise. c, GLMMs predicting longitudinal Veillonella 
relative abundance in the marathon participants. Differences in intercepts between fits for different marathon runners represent random effects. d, 
95% confidence intervals for all of the fixed effects (coefficients) included in the GLMMs. All coefficients except time (P = 0.0014, Wald Z-test; time 
postmarathon corresponds to increased Veillonella relative abundance) were not significant (NS), suggesting that Veillonella blooms in runners correspond 
to exercise state and not other fixed effects (n = 15 individuals).
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sequence effect was not significant (P = 0.758), while treatment day 
(P = 0.031; negative effect on run time) and Veillonella treatment 
(P = 0.016; positive effect on run time) were significant (Fig. 2b and 
Extended Data Fig. 3). In a separate experiment, levels of inflamma-
tory cytokines were quantified postexercise, and were significantly 
reduced in Veillonella-treated animals compared with L. bulgari-
cus or phosphate buffered saline (PBS) (Extended Data Fig. 6 and 
Supplementary Table 4). To assess changes in muscle physiology, the 
glucose transporter GLUT4 was quantified via western blot, but we 
observed no changes regardless of treatment (Extended Data Fig. 7).

To test whether our results would be replicated in an indepen-
dent cohort of human athletes, we performed shotgun metagenomic 
sequencing of stool samples (n = 87) from ultramarathoners and 
Olympic trial rowers both before and after exercise (Supplementary 
Table 5). Putative taxonomic abundances reproduced the previous 
16S sequencing-based association with Veillonella (Extended Data 
Fig. 8)8. By utilizing novel algorithms that allow for cheap con-
struction of metagenomic gene catalogs at a massive scale through 
the efficient use of cloud computing, we investigated phenotypic 
modulating effects of millions of microbial genes on athletes by 
building a sample (n = 87) by gene (n = 2,288,155) relative abun-
dance matrix (Extended Data Figs. 8 and 9 and Methods)9–13. The 
inability of Veillonella to ferment carbohydrates, coupled with the 
high observed abundance of the lactate import permease in previ-
ously sequenced isolates, suggests that metabolic enzymes facili-
tating lactate breakdown are likely conserved14. Across the entire 
ultramarathon and rower cohorts, there exists a group of gene 
families with differential relative abundance pre- and postexercise 
(Extended Data Fig. 9), representing every step of the enriched 
methylmalonyl-CoA pathway (P = 0.00147; Methods), degrading 
lactate into propionate, as assigned by Enzyme Commision (EC) 
ID numbers (Fig. 3a). Given the limited prevalence of the meth-
ylmalonyl-CoA pathway across lactate-utilizing microbes, this 
enrichment postexercise may implicate Veillonella in causing func-
tional changes in the metabolic repertoire of the gut microbiome. 

We verified strong production of acetate and propionate by per-
forming mass spectrometry on spent media collected after growing 
three Veillonella strains isolated from the human athletes (V. par-
vula, V. dispar and V. atypica) in lactate-supplemented brain–heart 
infusion media (BHIL) and semi-synthetic lactate media (Fig. 4a, 
Supplementary Table 6 and Methods).

Veillonella species metabolize lactate into the short-chain fatty 
acids (SCFAs) acetate and propionate via the methylmalonyl-CoA 
pathway15. Lactate dehydrogenase—the enzyme responsible for 
the first step of lactate metabolism—is present in a phylogeneti-
cally diverse group of bacteria (Fig. 3b). Querying microbial isolate 
strain genome annotations from National Center for Biotechnology 
Information (NCBI) shows that, unlike V. atypica, many other 
microbes are theoretically capable of utilizing lactate through lac-
tate dehydrogenase, but do not possess the full pathway to convert 
lactate into propionate (Fig. 3c). Other obligate anaerobes, such as 
Anaerostipes caccae and Eubacterium hallii commonly ferment lac-
tate into butyrate via different pathways (Fig. 3c). E. hallii can also 
produce propionate; however, this has been demonstrated as a bio-
transformation of 1,2-propanediol, rather than a complete pathway 
from lactate to propionate. Of note, the reference genomes on NCBI 
for both Veillonella dispar and Veillonella parvula are not annotated 
to have the succinate-CoA transferase needed for propionate pro-
duction to occur; this is likely to be due to an annotation error, as 
we validated the production of propionate via mass spectrometry 
on isolates of these species (Supplementary Table 6).

Taken together, these results show that not only is the genus 
Veillonella enriched in athletes after exercise but the metabolic 
pathway that Veillonella species utilize for lactate metabolism is 
also enriched. This result raises the possibility that systemic lactate 
resulting from muscle activity during exercise may enter the gastro-
intestinal lumen and become metabolized by Veillonella.

Next, we sought to determine whether systemic lactate is capable 
of crossing the epithelial barrier into the gut lumen, as this has not 
been demonstrated before to our knowledge. To investigate this, we 
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performed tail vein injections of 13C3 sodium lactate into mice col-
onized with either V. atypica or L. bulgaricus, and sacrificed them 
12 min after injection. This time point was chosen because it was 
the earliest time at which we observed serum lactate levels return 
to baseline levels after tail vein injections in pilot experiments. At 
sacrifice, we immediately collected serum and plasma following car-
diac puncture, and collected intestinal luminal contents by removing 
the colon and cecum from the mice and gently sampling the inner 
surface of the tissue. By performing liquid chromatography–mass 
spectrometry (LC-MS) on these tissues, we were able to identify 13C3-
labeled lactate present in both the serum and plasma, as well as in the 
lumen of the colons and ceca (Fig. 4b–d and Supplementary Table 7). 
We were unable to detect any 13C3-labeled propionate in these tissues; 
however, the 12-min time point from tail vein injection to sacrifice 
is likely to have been insufficient time for labeled lactate crossing the 
gut barrier to be metabolized into propionate by the gut Veillonella.

As we have shown that serum lactate is capable of entering the 
intestinal lumen, we sought to determine whether Veillonella colo-
nization may actively limit blood lactate levels by serving as a meta-
bolic ‘sink’. To test the capability of Veillonella to accelerate blood 

lactate clearance in vivo, we performed intraperitoneal injections of 
sodium lactate in mice colonized with either V. atypica or L. bulgari-
cus, and monitored blood lactate over time. Neither the basal nor the 
peak lactate levels between the treatment groups were significantly 
different (Extended Data Fig. 10 and Supplementary Table 8). The 
vast majority of lactate processing occurs in the liver16, and although 
systemic lactate infiltrates the intestinal lumen, we did not observe 
a change in overall lactate clearance on inoculation with Veillonella.

Propionate has been shown to increase the heart rate and maxi-
mum rate of oxygen consumption, and to affect blood pressure in 
mice17–19, as well as raise the resting energy expenditure and lipid 
oxidation in fasted humans20. To test whether the exercise-enhanc-
ing effects of Veillonella may be attributable at least in part to pro-
pionate, we performed intrarectal instillation of propionate in our 
mouse treadmill model. Propionate was introduced intrarectally 
rather than orally because colonic absorption provides a more direct 
route for propionate to reach the systemic circulation, mirroring the 
location of Veillonella-sourced propionate. Intrarectal propionate 
instillation (n = 8) compared with saline vehicle (n = 8) resulted in 
increased treadmill run times similar to those of V. atypica gavage 
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Butyrate (µM) Propionate (µM) Pyruvate (µM) Lactate (µM) Acetate (µM)

V. atypica LM 19 ± 0.3*** 10,611 ± 584** 4 ± 0.4*** 431 ± 5.6*** 92,432 ± 3,129**

L. bulgaricus LM 9 ± 0.5* 3 ± 1.5 32 ± 2.7 737 ± 45 4,985 ± 247**

LM alone 11 ± 0.1 4 ± 0.5 41 ± 0.4 851 ± 6.6 1,741 ± 12.2

V. atypica BHIL 69 ± 0.5* 2,286 ± 68* NA NA 4,149 ± 118*

BHIL alone 147 ± 4.1 160 ± 1.4 NA NA 7,557 ± 30
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glucose is converted to lactate in the muscle, enters the liver via blood circulation, and is then is converted back to glucose in the liver via gluconeogenesis. 
Red arrows represent the steps proposed in this work. First, lactate produced in the muscle enters the intestinal lumen via the blood circulation. In the 
intestine, it acts as a carbon source for specific microbes, including Veillonella species. This causes the observed bloom in intestinal Veillonella, as well as 
the production of SCFA byproducts (predominantly propionate), which are taken up by the host via the intestinal epithelium. The presence of microbiome-
sourced SCFAs in the blood improves athletic performance via an unknown mechanism. Together, this creates an addendum to the Cori cycle by 
converting an exercise byproduct into a performance-enhancing molecule, mediated by naturally occurring members of the athlete gut microbiome.
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(P = 0.03; Fig. 4e). As in the Veillonella gavage experiments, we ran 
the same panel of inflammatory cytokines on serum taken 40 min 
after treadmill running, but found no significant differences in 
cytokine levels (Extended Data Fig. 6 and Supplementary Table 4). 
Therefore, the introduction of propionate into the colon is sufficient 
to result in an enhanced exercise phenotype via a mechanism that 
does not impact the inflammatory cytokines measured.

Coupling computational approaches, multi’omic data collec-
tion approaches and experimental validation looks promising as 
a method to approach unvalidated metagenomic associations that 
have been proposed in the past decade. Acting on this principle, we 
observed that: (1) Veillonella abundance increased in the gut micro-
biome postexercise in two independent cohorts of athletes; (2) the 
Veillonella methylmalonyl-CoA pathway is overrepresented in ath-
lete metagenomic samples postexercise; (3) systemic lactate can 
cross the gut barrier into the lumen of the gut; (4) in a longitudinal 
AB/BA crossover study in mice, Veillonella inoculation improved 
treadmill performance; and (5) treadmill performance is improved 
in mice administered propionate via intracolonic infusion.

These data illustrate a model in which systemic lactate produced 
during exercise crosses to the gut lumen and is metabolized by 
Veillonella into propionate in the colon, which in turn serves to pro-
mote performance. Gut colonization of Veillonella may be augmenting 
the Cori cycle by providing an alternative lactate-processing method 
whereby systemic lactate is converted into SCFAs that re-enter the cir-
culation (Fig. 4f). SCFAs are absorbed in the sigmoid and rectal region 
of the colon and enter circulation via the pelvic plexus, bypassing the 
liver and draining via the vena cava to reach the systemic circulation 
directly21. Microbiome-derived SCFAs then augment performance 
directly and acutely, suggesting that lactate generated during sustained 
bouts of exercise could be accessible to the microbiome and converted 
to these SCFAs that improve athletic performance.

In conclusion, we have shown that the microbiome may be a crit-
ical component of physical performance, and highlight the benefits 
derived from it. An important question is how this performance-
facilitating organism first came to be more prevalent among ath-
letes. We propose that the high-lactate environment of the athlete 
provides a selective advantage for colonization by lactate-metaboliz-
ing organisms such as Veillonella. Future studies are needed to help 
explain why there is an apparent preference for Veillonella and not 
any of the many other lactate-metabolizing organisms. Veillonella in 
the physically active host therefore serves as a potential example of 
a symbiotic relationship in the human microbiome.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41591-019-0485-4.
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Methods
Participation recruitment. All study participants were recruited following a Sports 
Genomics protocol (number IRB15-0869) approved by the Institutional Review 
Board of the Wyss Institute for Biologically Inspired Engineering. Each participant 
read and signed a consent form before study enrollment, and we have complied 
with all of the relevant ethical regulations.

Sample collection, extraction and library preparation. For the collection of 
materials, study participants were provided with a 15 ml falcon tube with a 1 ml 
pipette tip inserted inside. Participants were instructed to dip the pipette tips into 
soiled toilet tissue, then place them back into the tubes and label the tubes with the 
date and time of collection. Samples were kept at 4 °C for short-term storage until 
sample pickup, at which point they were immediately placed onto dry ice, then 
transferred to a −80 °C freezer for long-term storage.

Fecal samples were thawed on ice and resuspended in 2–5 ml of PBS, 250 µl of 
which was used for DNA extraction using the Mo Bio PowerSoil high-throughput 
DNA extraction kit, following the manufacturer’s protocol. For 16S rDNA library 
construction, 1–5 µl of purified DNA was used for PCR amplification of the V4 
variable region using Q5 Hot Start Polymerase (NEB). Primers were adapted from 
the Earth Microbiome Project (http://www.earthmicrobiome.org/), attaching 
Illumina paired-end adapters (forward: CTT TCC CTA CAC GAC GCT CTT 
CCG ATC TGT GCC AGC MGC CGC GGT AA; reverse: GGA GTT CAG ACG 
TGT GCT CTT CCG ATC TGG ACT ACH VGG GTW TCT AAT). Illumina 
barcodes were added to libraries during a second PCR step (forward: AAT GAT 
ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT C; 
reverse: CAA GCA GAA GAC GGC ATA CGA GAT GTG ACT GGA GTT CAG 
ACG TGT GCT C) and end products were purified via column chromatography 
(Zymo Research). Individual libraries were quantified and normalized for 
sequencing using the Quant-iT PicoGreen reagent (Thermo Fisher Scientific). For 
whole-genome shotgun library construction, 1 ng of purified DNA was used for 
Illumina’s Nextera XT Tagmentation kit, following the manufacturer’s protocol. 
Libraries were submitted to the Harvard Biopolymers core sequencing facility for 
bioanalyzer quality control and 150-base pair paired-end sequencing reads using 
either the Illumina MiSeq or HiSeq 2500 system (high output mode) for 16S rDNA 
and shotgun analysis, respectively.

Metadata collection. Each study participant was provided with a questionnaire 
to collect health, dietary and athletic background information (adapted from The 
American Gut; http://americangut.org/). Additionally, for each sample collection, 
study participants filled out a daily annotation sheet to collect dietary, exercise and 
sleep information.

16S analysis. Each subject provided fecal samples on a daily basis, up to one week 
before and one week after the marathon (controls did not run in the marathon but 
provided fecal samples). Next, we extracted genomic DNA from these samples and 
performed 16S rDNA amplicon sequencing, followed by bioinformatic analysis, 
to obtain genus-level resolution of bacteria in each individual’s microbiome 
(Supplementary Tables 1 and 2).

16S reads were processed with the DADA2 pipeline and phyloseq22,23. Default 
settings were used for filtering and trimming. Built-in training models were 
utilized to learn error rates for the amplicon dataset. Identical sequencing reads 
were combined through DADA2’s dereplication functionality, and the DADA2 
sequence–variant inference algorithm was applied to each dataset. Subsequently, 
paired-end reads were merged, a sequence table was constructed, taxonomy was 
assigned, and abundance was calculated at all possible taxonomic levels.

16S mixed-effects modeling in the human cohort. We constructed a series of 
GLMMs to predict Veillonella relative abundance in the marathon participants 
from both random effects (individual variation per athlete that manifests 
longitudinally) and fixed effects (United States Department of Agriculture (USDA) 
MyPlate consumption categories, protein powder supplementation, menstruation 
status, race, time, body mass index (BMI), weight, gender and age).

The longitudinal nature of the microbiome sampling, coupled with the 
unique lifestyles of athletes, means that diet, physical characteristics, age, gender, 
ethnicity and the menstrual cycle could potentially confound the association 
between postmarathon state and Veillonella relative abundance24,25. As some food 
compounds can selectively increase the relative abundance of Veillonella, 1,267 
meal records logging every instance of food consumption over the course of 
the study (Supplementary Table 1) were quantified according to USDA MyPlate 
and associated with daily microbiome samples. LOOCV was performed for the 
GLMM analysis where the P value for the time coefficient was calculated for all 
permutations of eliminating one athlete, which revealed a general trend of no 
individual athlete driving significance, with one minor outlier (Extended Data Fig. 
1; Wald Z-tests). To ensure that an arbitrary shuffling of participant labeling would 
not yield significant results, the GLMM was trained 1,000 times on input data with 
permuted labels, which generated uniformly distributed P values and showed the 
significance of the original labeling (Extended Data Fig. 1; Wald Z-tests). Thus, 
the observed significance of the association between Veillonella relative abundance 
and pre- and postmarathon state is likely not confounded by any fixed effects. To 

test whether Veillonella has any phenotypic impact on running ability, we next 
introduced Veillonella to mice in a treadmill experiment.

Modeling of 16S Veillonella relative abundance for athletes participating in 
the marathon was done with the R nlme package26. A total of 1,267 meal records 
logging every instance of food consumption over the course of the study were 
quantified according to USDA MyPlate and associated with daily 16S samples by a 
nutritionist. Relative abundance was first modeled as:

Abundance = β0 + βtime + βsex + βweight + βBMI + βage + βrace + βmenstruation  
+ βvegetables + βfruits + βgrains + βprotein + βdairy + βdietary protein supplementation

Subsequently, a second model was generated that included interaction terms 
of time:vegetables and time:menstruation. Significance was calculated for all of the 
coefficients included in the GLMM with Wald Z-tests (default calculation in the 
library utilized). Coefficients were created with the coefplot2 package27.

The code for the two models is provided below.

Model_1 < -lme(Veillonella~time + sex + weight + BMI + age + race  
+ menstruation + vegetables + fruits + grains + protein + dairy + dietary_protein_
supp,random = ~1|subjectID,data = marathon16S)

Model_2 < -lme(Veillonella~time + sex + weight + BMI + race + menstruation  
+ vegetables + fruits + grains + protein + dairy + dietary_protein_ 
supp + time:vegetables + time:menstruation,random = ~1|subjectID, 
data = marathon16S)

Model predictions overlayed on the underlying data were visualized with the 
ggplot2 R package28.

Model results were validated with both LOOCV and permutation testing on 
shuffled labels.

Preparation of bacteria for gavage. V. atypica and L. bulgaricus were grown 
in 250 ml BHIL (10 ml of 60% sodium lactate per liter) and MRS broth, 
respectively. The optical density measured at a wavelength of 600 nm (OD600) was 
monitored and at an optical density of 0.4–0.6, cells were pelleted by refrigerated 
centrifugation at 5,000g for 10 min. The pellet was washed in PBS and resuspended 
in 2 ml residual PBS. Aliquots of 100 µl were frozen at −80 °C and the numbers 
of colony-forming units (c.f.u.) per ml were measured by serial dilution onto 
BHIL agar plates. V. atypica was gavaged in wild-type C57BL/6 mice to determine 
viability and transit time through the gastrointestinal tract, observing peak viable 
bacterial c.f.u. counts in fecal pellets 5 h after gavage.

Treadmill crossover experiment. Animal research was approved by the Joslin 
Diabetes Center Institutional Animal Care and Use Committee and we complied 
with all of the relevant ethical regulations. For the treadmill experiments, 8- to 
12-week-old CL57BL/6 mice (n = 32) were acclimated to treadmilling with 
two bouts of 30 min of 5 m min−1 walking, split over two consecutive days. For 
exhaustion measurements, mice were fasted for 7 h before exercise. Then, 6 h before 
exercise, mice were gavaged with 200 µl of 2.5% sodium bicarbonate to neutralize 
the stomach contents, and 20 min after the first gavage, mice were gavaged 
200 µl of either V. atypica or L. bulgaricus, prepared as above and normalized to 
5 × 109 c.f.u. ml−1. Next, 5 h postgavage, mice were run on the treadmill, starting at 
5 m min−1 and increasing the speed by 1 m min−1 every minute until exhaustion. 
The time of exhaustion was recorded for every animal, defined as a mouse failing 
to return to the treadmill from the rest platform after three consecutive attempts 
to continue running. This protocol was repeated for two more days, followed by 
4 d of rest and 3 d of crossover treatment. On the first day of treatment, serum was 
collected 40 min postexhaustion via a tail vein bleed and measured via Ciraplex 
multiplex mouse cytokine assay (Aushon Biosystems).

Treadmill run time mixed-effects modeling. Despite the high number of mice 
utilized in the AB/BA crossover experiment, comparisons of raw run times in this 
context could be confounded both by carryover effect (modeled as a sequence 
effect) inherent in the longitudinal study design, as well as unavoidably high 
intermouse variation. To account for this, we constructed a series of GLMMs 
predicting run time (Methods). These models incorporate both random effects 
(individual variation per mouse that manifests longitudinally) and fixed effects 
(treatment day, treatment sequence and treatment type given). Modeling was 
conducted with the R nlme package26. Visualization of coefficients was conducted 
using the coef2plot R package27. Visualization of predictions overlayed on data was 
conducted using the R ggplot2 package28.

Visualization of all longitudinal data points with the GLMM predictions 
overlayed showed both the effect of V. atypica increasing performance on both 
sides of the crossover when aggregated by treatment group (thick lines), and 
the trends for each of the 32 individual mice (thin lines) (Fig. 2b). LOOCV was 
performed for the GLMM analysis where the P value for the V. atypica treatment 
coefficient was calculated for all permutations of eliminating one mouse, which 
revealed that no individual mice were driving significance (Extended Data Fig. 3; 
Wald Z-tests). To ensure that an arbitrary shuffling of mouse labeling would not 
yield significant results, the GLMM was trained 1,000 times on input data with 
permuted labels, which generated uniformly distributed P values and showed the 
significance of the original labeling (Extended Data Fig. 3; Wald Z-tests). This 
longitudinal modeling approach allows us to interpret that, as the treadmill runs 
were conducted back to back each week on subsequent days, the mice in aggregate 
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had decreasing run times as the time to exhaustion decreased (visible as a slope 
of predictions in Fig. 2b), while V. atypica treatment independently increased run 
times (visible as the crossover of predictions showing the Veillonella treatment 
group having longer times to exhaustion on both sides of the crossover in Fig. 2b). 
To identify possible biological mechanisms for the Veillonella effect, we quantified 
levels of various inflammatory cytokines in the blood immediately following the 
treadmill run. We observed that several proinflammatory cytokines, including 
tumor necrosis factor-α and interferon-γ, were significantly reduced in V. atypica-
treated mice compared with both the baseline and the control treatment (Extended 
Data Fig. 6 and Supplementary Tables 4 and 13). In a separate experiment, we 
quantified levels of the muscle glucose transporter GLUT4 to assess the effects on 
muscle physiology, but found no difference between the V. atypica treatment and 
control (Extended Data Fig. 7). Together, taking into account intermouse variation, 
the longitudinal study design and the possible carryover effects of an AB/BA 
crossover trial, V. atypica treatment causes substantial increases in treadmill run 
time in mice.

The models were constructed to predict treadmill run time in the AB/BA 
crossover experiment to include the treatment effect of Veillonella, period effects 
(time of treatment), carryover effects due to the treatment crossover, and effects  
for naturally occurring mouse variation. In general, we can model expected run 
time as:

Sequence: V. atypica → L. bulgaricus Week 1: μ + π1 + αA Week 2: μ + π2 + αB + λA

Sequence: L. bulgaricus → V. atypica Week 1: μ + π1 + αB Week 2: μ + π2 + αA + λB

Where αA and αB are treatment effects, λA and λB are carryover effects, and π1 
and π2 are period effects.

We initially attempted to model carryover effect as a sequence effect or a 
period-specific treatment effect (interaction term). The R code for the models is 
provided below:

Model_1 < -lme(seconds_run~treatment + sequence + period,random  
= ~1|subject,data = datain)

Model_2 < - lme(seconds_run~treatment*period,random  
= ~1|subject,data = datain)

By gauging the correlation of coefficients, we selected model_1 for the analysis 
in Fig. 2.

Metagenomic analysis. All of the steps in the processing of raw metagenomic data 
were done utilizing the Aether package9. Raw reads were de novo assembled using 
megahit10. Open reading frames and annotations were generated using prokka11. 
A gene family catalog was generated from the called open reading frames at 95% 
identity utilizing the CD-HIT software package12. A raw abundance count matrix 
was generated utilizing the gene family catalog, Bowtie 2 and SAMtools29,30. The 
raw abundance count matrix was normalized both by sample and by gene length13. 
Metabolic pathways were queried using MetaCyc, and EC IDs were pulled from 
prokka annotations11,31. R was utilized to perform the majority of statistical tests, 
with the exception of pairwise analysis of variance (ANOVA) tests, for which the 
SciPy library in Python was used32. Root mean square error calculations were 
performed using the plotrix package33.

MetaPhlAn2 taxonomy in metagenomics data. Putative taxonomic abundances 
were calculated with MetaPhlAn2 (ref. 8) and found to have the same association 
between Veillonella and exercise status as the previous marathon runner results 
(P = 0.03; Extended Data Fig. 8).

Annotations. To compare trends in the aggregate microbiome with the metabolic 
processes of microbes that had elevated 16S abundance in the previous experiment, 
a pairwise ANOVA was performed on all ~2.3 million genes in the catalog to 
look for significant differences before and after exercise. A total of 396 gene 
families with unique annotations showed statistically different relative abundance 
(P < 0.005). While false discovery rate correction did not yield significant 
individual genes, of these 396 gene families, 391 share functional annotations with 
the reference assemblies of the V. atypica-type strain on NCBI. Of the significant 
genus-level results from the 16S data, Veillonella has extremely high-quality 
assemblies of cultured isolates.

Significant alleles are present in each of the 87 samples (Extended Data Fig. 8). 
Interestingly, when all 396 significant alleles are segregated by exercise state and 
sample, discordant shifts of relative abundance are observed (Extended Data  
Fig. 8). This suggests that changes in global microbiome function are associated 
with Veillonella abundance, and that conserved Veillonella genes may generally play 
metabolic roles.

Comparative genomics. Genome annotations were retrieved from NCBI reference 
genomes. Phylogenetic trees were generated from NCBI taxonomy and visualized 
with phylo.io34. Heat maps were generated with the pheatmap package in R35.

Gene catalog creation. Raw reads were processed and de novo assembled into 
4,802,186 contigs9,10. A total of 4,792,638 total open reading frames were called, 
which were subsequently clustered into 2,288,155 gene families with a threshold 
of 95% identity to create a gene catalog alongside putative annotations assigned 
by homology11,12. Of these gene families, 801,307 were assigned annotations 

and 1,486,948 were putatively classified as hypothetical proteins. Comparing 
annotation state versus gene family size yields the expected result that larger 
families, which are likely to be present in more microbes, tend to have many more 
annotations (Extended Data Fig. 8). Raw reads were then aligned back to the gene 
catalog to create a raw count abundance matrix29,30. This matrix was normalized 
both per sample and by gene length to create a relative abundance matrix13.

Pathway elucidation. Reactions involved in the breakdown of lactate to both 
propionate and acetate were manually associated with EC IDs using MetaCyc31.

In vitro growth and SCFA analysis. Veillonella species (V. dispar, V. parvula and 
V. atypica) were isolated and purified from several study participants and grown 
in three different media compositions: (1) BHIL (10 ml of 60% sodium lactate 
per liter); (2) MRS broth (BD) supplemented with lactate (10 ml of 60% sodium 
lactate per liter); and (3) semi-synthetic lactate medium (per liter: 5 g bacto yeast 
extract, 0.75 g sodium thioglycolate, 25 ml basic fuchsin and 21 ml 60% sodium 
lactate (pH 7.5)). Veillonella species were inoculated into each medium, under 
anaerobic conditions, and allowed to grow for 48 h to reach the stationary phase. 
After 48 h, bacteria were pelleted and supernatants were collected for lactate and 
SCFA measurements. Approximately 10 µl of supernatant was used to measure the 
lactate via the Lactate Scout (lactate.com). The remaining supernatants were frozen 
at −80 °C, then submitted to the Harvard Small Molecule Mass Spectrometry core 
facility for butyrate, propionate and acetate quantitative analysis.

SCFAs identified from the mass spectrometry in all three media conditions 
corresponded with the propionate end product suggested by the metagenomic 
results. Acetate was not observed in MRS or BHIL, likely due to high existing 
concentrations in the media making the forward reaction thermodynamically 
unfavorable. However, acetate production was observed in semi-synthetic lactate 
media (Supplementary Table 7).

13C3-lactate flux tracing. Ten-week-old C57BL/6 mice were treated with  
sodium bicarbonate followed by 109 c.f.u. of either V. atypica (n = 4) or L. bulgaricus 
(n = 4), prepared as above. Then, 20% w/w 13C3 sodium lactate (Cambridge  
Isotope Laboratories) was diluted to a concentration of 400 mM in PBS. Mice  
were injected with 100 µl intravenously via the tail vein and, after 9 min, 
anesthetized with isoflurane. One mouse treated with V. atypica was unable to be 
injected due to vein clamping and had to be removed. Next, 10 min postinjection, 
anesthesia was confirmed via foot pinch and mice were sacrificed via cardiac 
puncture. Whole blood was divided into two samples to obtain both serum and 
plasma. These were flash frozen in liquid nitrogen at 12 min postinjection and 
stored at −80˚C.

Immediately following cardiac puncture, mice were dissected to remove the 
colon and cecum, and the contents were removed by squeezing with sterilized 
forceps into preweighed tubes. The contents were immediately flash frozen in 
liquid nitrogen. The timing varied slightly, but this was done between 17 and 
19 min postinjection.

Samples were analyzed for lactate and propionate by the Broad Institute 
Metabolomics Platform. LC-MS metabolomics were performed as previously 
described36. LC-MS traces were identified and integrated to quantify the presence 
of 13C0- and 13C3-lactate isotopes.

Colorectal propionate instillation. Treadmilling followed the same protocol as 
above. Mice were fasted 7 h before exercise to normalize their metabolic profiles. 
Some 30 min before exercise, mice were treated with 200 µl of either PBS vehicle 
alone (n = 8) or 150 mM sodium propionate in PBS (n = 8), using a flexible gavage 
needle to introduce 200 µl of solution into the colon. Mice were then run to 
exhaustion as above. This protocol was repeated for three consecutive days. On 
the first day of treatment, serum was collected 40 min postexhaustion via tail vein 
bleed and measured using the Ciraplex multiplex mouse cytokine assay (Aushon 
Biosystems).

Lactate clearance. To measure the lactate clearance rate, mice were first fasted 
for 7 h before measurement to stabilize the basal lactate levels. Then, 5 h before 
measurement, mice were treated with sodium bicarbonate followed by 109 c.f.u. of 
either V. atypica or L. bulgaricus, prepared as above (n = 8). Next, 30 min before 
measurement, mice were weighed and individually caged, and a baseline blood 
lactate reading was taken using a Lactate Scout meter. Mice were administered 
sodium lactate via intraperitoneal injection with a dose of 750 mg kg−1, prepared 
as a 75 mg ml−1 solution of sodium lactate in pH 7.0 PBS. Blood lactate levels were 
monitored with a Lactate Scout meter at 5, 15, 25, 35 and 45 min postinjection.

Statistics. For Fig. 1a,b, Wilcoxon rank-sum tests with continuity correction 
were used to investigate differences in taxonomic composition before and after 
exercise. The mean Veillonella abundance was 0.9 orders of magnitude greater 1 d 
postexercise compared with 1 h before exercise.

For Fig. 1c,d, longitudinal data were modeled using a GLMM approach. In our 
model, the random effect was individual variation per marathon runner. Fixed 
effects are shown in Fig. 1d. An advantage of this type of statistical analysis is that it 
can account for the large variation between marathon participants in this type  
of study.
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To determine statistical significance, a Wald Z-test was used to assign P values 
to coefficients in the GLMM. No outliers were removed in this analysis.

For Fig. 2a, each animal was treated with both V. atypica and L. bulgaricus 
as part of the AB/BA crossover. Because all 32 animals were treated twice and 
compared between treatments, the P value was generated using a paired t-test 
(P = 0.022). The normality assumption was assessed via Shapiro–Wilk’s normality 
test (P = 0.67), validating the use of the t-test.

For Fig 2b, longitudinal data were modeled using a GLMM approach. In our 
model, the random effect was individual variation per mouse. Fixed effects were 
treatment effect, period effect (the time point at which measurements were made) 
and carryover/sequence effect (if the order of treatments in the crossover affected 
later results). An advantage of this type of statistical analysis is that it can account 
for the large variation between mice in this type of study.

Figure 2b shows the number of seconds run until exhaustion at six time 
points, with each of the 32 mice having one measurement per time point. For each 
treatment order (LLLVVV and VVVLLL), the GLMM was fitted both to each 
individual mouse (skinny blue and red lines; note that these are all parallel for mice 
in the same treatment order—the space between these lines represents the ‘random 
effect’ of natural variation between mice) and all mice with the same treatment 
order (thick blue and red lines).

To determine statistical significance, a Wald Z-test was used to assign P values 
to coefficients in the GLMM. No outliers were removed from this analysis.

For Fig. 3a and Extended Data Fig. 9, P values for individual genes were 
generated utilizing pairwise ANOVA comparing the relative abundance before and 
after exercise. Non-significant families were associated with homologs common 
in other microbes that do not change in abundance. To determine the significance 
of potential over-representation, 1,000 global EC IDs were randomly selected, and 
mean differences in relative abundance between samples taken before and after 
exercise were calculated. These EC IDs were used to construct an odds table to 
determine the probability of having a set of eight selected EC IDs with increases in 
mean gene level relative abundance after exercise. This calculation determined that 
the relative abundance changes in Fig. 3b–i are significant (P = 0.00147, Fisher’s 
exact test for count data).

For Supplementary Table 1, P values were generated using Welch’s t-test 
(unequal variances t-test).

For Fig. 4d, P values were generated using a one-sample t-test. Ratios of 
labeled/unlabeled lactate from samples were compared with the expected ratio 
determined mathematically. Each sample was independently compared with the 
expected ratio, then multiple hypothesis correction was performed using the false 
discovery rate correction method of Benjamini and Hochberg (serum, P = 0.00001; 
plasma, P = 0.00001; cecum content, P = 0.00001; colon content, P = 0.001).

For Fig. 4e, the P value (P = 0.028) was generated using Welch’s t-test (unequal 
variances t-test).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data have been uploaded to NCBI and SRA in the form of the 
BioProjects PRJNA472785 (16S) and PRJNA472768 (MGX). These are linked to 
associated BioSamples, which in turn are linked to the paired-end read files in the 
SRA, and correspond to the metadata in the Supplementary Information files.

Code availability
Unless otherwise noted, all plots were generated in R version 3.4.1 with the ggplot2, 
dplyr, scales, grid and reshape2 packages28,37–40. Large-scale data analysis was done 
on AWS, utilizing machines running Ubuntu 16.04. Data curation methods were 
coded in python version 2.7.12. The Aether package utilized for analysis is available 
at https://github.com/kosticlab/aether.
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Extended Data Fig. 1 | Statistical validations of association between Veillonella abundance and marathon running. a, Histogram of P values (Wald 
Z-tests) for time coefficient from LOOCV models predicting 16S Veillonella abundance. The red line represents the P value for the model trained without 
any hold outs. b, Histogram of P values for time coefficients from 1,000 label permutations in GLMM models predicting Veillonella relative abundance. The 
red line represents the P value for the model trained without any label permutation.
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Extended Data Fig. 2 | Microbiome composition in control subjects. a, 16S composition in control subjects. b, Veillonella relative abundance in  
control subjects.
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Extended Data Fig. 3 | Statistical validations of the association between Veillonella gavage and mouse treadmill run time. a, Density plot of maximum 
run times in the AB/BA crossover study. A two-sided Shapiro–Wilk normality test on the maximum run times for each mouse in each treatment group 
resulted in P = 0.67, with the null hypothesis that the distribution of data is normal (n = 64). b, 95% confidence intervals for the coefficient effect on 
treadmill run time in AB/BA crossover (Wald Z-tests, n = 64). Center values are the regression estimate for each coefficient. Error bars represent the 
95% confidence interval. c, Histogram of P values for the treatment coefficient from LOOCV models predicting treadmill run time. The red line represents 
the P value for the model trained without any hold outs (Wald Z-tests, n = 64). d, Histogram of P values for the treatment coefficient from 1,000 label 
permutations in GLMM models predicting treadmill run time. The red line represents the P value for the model trained without any label permutation 
(Wald Z-tests, n = 64 per permutation).
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Extended Data Fig. 4 | AB/BA crossover study results segregated by individual mouse. Each of the 32 facets (each representing an individual mouse) 
has six longitudinal treadmill run times plotted (three pre- and three post-treatment crossover). The shapes of the points represent the treatment 
sequence. Each mouse facet has two horizontal lines showing the mean run time when dosed with L. bulgaricus (light blue) or V. atypica (light red). Each 
facet has a GLMM fit to all data in a treatment sequence (green), a LOOCV GLMM fit trained on all mice except for the mouse the facet represents (red), 
and a GLMM fit showing the change in intercept related to random effect for each mouse (blue).
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Extended Data Fig. 5 | Difference in maximum treadmill run time. Difference in maximum run time between V. atypica and L. Bulgaricus gavage treatment 
periods, segregated into ‘responders’ and ‘non-responders’ to V. atypica treatment (n = 32).
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Extended Data Fig. 6 | Mouse serum cytokine response. a,b, Cytokines after V. atypica and L. bulgaricus gavage. Each mouse sample is represented as 
an individual point, with the central bar representing the mean and error bars representing s.e.m. (n = 64, 32 and 32 for baseline, L. bulgaricus and V. 
atypica, respectively). c,d, Cytokines after intrarectal propionate instillation. Each mouse sample is represented as an individual point, with the central bar 
representing the mean and error bars representing s.e.m. (n = 32, 16 and 16 for baseline, L. bulgaricus and V. atypica, respectively). P values were determined 
by one-way ANOVA followed by Tukey’s posthoc test.
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Extended Data Fig. 7 | GLUT4 measurement in mice following gavage. a, Representative section of western blot showing GLUT4 abundance in pre-
exercise states, as well as following L. bulgaricus and V. atypica gavage. A stain-free control was used to normalize the densitometry analysis shown. 
The experiment was performed once (n = 8). b, Fold-change in GLUT4 abundance. Each point represents an individual mouse sample, the centre bar 
represents the mean and error bars represent s.e.m. (n = 8).
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Extended Data Fig. 8 | Metagenomic analysis of athlete gut microbiome samples. a, Fraction of putative Veillonella relative abundance from 
metagenomics (calculated utilizing MetaPhlAn2) before and after exercise in rowers and runners. b, Significant alleles (calculated from pairwise ANOVA) 
that are present in each of the 87 samples. c, The aforementioned 396 significant alleles segregated by exercise state and sample. d, Histogram comparing 
non-redundant gene family size and annotation fraction.
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Extended Data Fig. 9 | Enzyme-level abundance analysis of the methylmalonyl-CoA pathway. Enzyme-resolution, log-transformed relative abundances 
of differentially abundant non-redundant gene families mapped by EC ID to methylmalonyl-CoA pathway components. a, Pathway in aggregate. b–i, 
Individual reactions in the pathway (n = 8). Data are represented as violin plots, which display the distribution of data as a rotated kernel density 
distribution.
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Extended Data Fig. 10 | Lactate clearance following IP injection in mice. a, Mice were gavaged either V. atypica or L. bulgaricus and, 5 h later, injected with 
sodium lactate (750 mg kg−1). Blood lactate was measured 5 min postinjection and every subsequent 10 min (n = 8). Points are means ± s.e.m. b, Area 
under the curve (AUC) was determined for each mouse and compared between treatments. Each mouse is represented as an individual point, with the 
central bar representing the mean and error bars representing s.e.m. (P = 0.72 by two-sided unpaired t-test, n = 8).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection no software was used

Data analysis Unless otherwise noted, all plots were generated in R version 3.4.1 with the ggplot2, dplyr, scales, grid, and reshape2 packages. Large 
scale data analysis was done on AWS utilizing machines running Ubuntu 16.04. Data curation methods were coded in python version 
2.7.12. Unless otherwise noted specifically in the rest of the methods section, code utilized is available to access at https://github.com/
kosticlab/athlete and https://github.com/kosticlab/aether. Putative taxonomic abundances were calculated with Metaphlan2. 16S reads 
were processed with the dada2 pipeline and phyloseq. 16S Veillonella relative abundance modeling for athletes participating in the 
marathon was done with the R nlme package. Coefficients were were created with the coefplot2 package. Phylogenetic trees were 
generated from NCBI taxonomy and visualized with phylo.io. All steps in the the processing of raw metagenomic data were done utilizing 
the Aether package. Raw reads were de novo assembled using megahit. Open reading frames and annotations were generated using 
prokka. A gene family catalog was generated from the called open reading frames at 95% identity utilizing the CD-HIT software package. 
A raw abundance count matrix was generated utilizing the gene family catalog, bowtie2, and samtools. The raw abundance count matrix 
was normalized both by sample and by gene length. Metabolic pathways were queried using MetaCyc and EC IDs were pulled from 
prokka annotations. Heatmaps were generated with the pheatmap package in R.R was utilized to perform the majority of statistical tests 
with the exception of pairwise ANOVA tests, for which the SciPy library in python was used. Root mean square error calculations were 
performed using the plotrix package. The canopy algorithm utilized is available here: https://bitbucket.org/HeyHo/mgs-canopy-
algorithm/wiki/Home. Reactions involved with the breakdown of lactate to both propionate and acetate were manually associated with 
EC IDs using MetaCyc.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All raw sequencing data has been uploaded to NCBI and SRA in the form of the BioProjects PRJNA472785 (16S) and PRJNA472768 (MGX) which are linked to 
associated BioSamples which are in turn linked to the paired end read files on SRA and correspond to the metadata in the supplement. Additionally, all sequencing 
files are also available to download from a web browser at https://s3.amazonaws.com/athlete-sequencing-data/index.html.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Leading up to the 2015 Boston Marathon, we attempted to recruit as many participating athletes 
as possible and collect as many samples as possible from each participant one week before and one week after the race. An equal amount of 
sedentary controls were then recruited for participation. These sample sizes were sufficient to observe a statistically robust association 
between Veillonella abundance and time after marathon.

Data exclusions No data were excluded from the analysis.

Replication Animal research studies were performed a minimum of three times. All attempts at replication were successful.

Randomization All animals were randomly allocated into experimental groups.

Blinding Investigators were blinded to group allocation during data collection and analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals All laboratory animals were male Mus musculus strain C57BL/6J aged 8-12 weeks.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Animal research was approved by the Joslin Diabetes Center IACUC. We have complied with all relevant ethical regulations.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Athlete 
26 total (15 marathon) 
65% female (73%) 
Average age is 27.4 (27.1) 
Average BMI = 22.4 (22.4) 
85% white, 11.5% asian, 4% mixed (73%, 20%, 7%, respectively) 
100% from US (96%) 
Controls 
12 total (11 marathon study) 
50% female (55%) 
Average age = 29.5 (29.2) 
Average BMI = 22.7 (22.9) 
50% white, 33% asian, 8% black (45%, 36%, 9% respectively) 
58% from US (55%)

Recruitment Participants were recruited via IRB approved flyers and word of mouth. Our study design relied on prospective selection of the 
participants, therefore the concern of self-selection bias with regard to outcomes has been eliminated. Each potential 
participant went though a screening process prior to enrollment to assess study exclusion criteria, which included recent use of 
antibiotics, pregnancy, travel abroad, or recent inflammatory bowel states. Additionally, participants were determined to be 
athletes or controls based on screening questions that determined frequency of exercise and training for upcoming athletic 
competitions.

Ethics oversight All study participants were recruited following an IRB approved Sports Genomics protocol (#IRB15-0869), conducted at the Wyss 
Institute for Biologically Inspired Engineering. Each participant read and signed a consent form prior to study enrollment. We 
have complied with all relevant ethical regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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