Parmi les fonctions f ci-dessous, lesquelles sont des densités? Donner c et la fonction de répartition correspondante pour celles qui le sont.

- 1. Pour $n \in \mathbb{N}$, $f(x) = cx^{-n} \mathbf{1}_{[1,+\infty[}(x)$.
- 2. $f(x) = \frac{c}{\sqrt{x(1-x)}} \mathbf{1}_{]0,1[}(x).$
- 3. $f(x) = \frac{x+1}{2} \mathbf{1}_{[-1,c[}(x).$

Exercice 2

Soit X une variable aléatoire de fonction de répartition définie par :

$$F(x) = \begin{cases} 0 & \text{si } x < 1/4\\ 1/2 & \text{si } x \in [1/4, 2/3[\\ 3/4 & \text{si } x \in [2/3, 1[\\ 1 & \text{si } x \ge 1 \end{cases}$$

Tracer le graphe de F et calculer $\mathbb{P}(X \geq 2/3)$, $\mathbb{P}(X < 2/3)$, $\mathbb{P}(X > 2/3)$ et $\mathbb{P}(X \in [1/4, 2/3])$. La loi de X possède-t-elle une densité ?

Exercice 3

Vous avez donné rendez-vous à un ami à 17h. Mais celui-ci est régulièrement en retard, et vous avez observé empiriquement que son retard est une variable aléatoire X dont la loi est uniformément répartie entre 0 et 1h. Pour éviter d'attendre trop, vous décidez de vous rendre sur le lieu du rendez-vous à 17h15.

- 1. Décrire la loi de X ainsi que sa fonction de répartition.
- 2. Calculer les probabilités pour que
 - (a) vous et votre ami arriviez au rendez-vous à la même heure;
 - (b) vous soyez plus en retard que votre ami;
 - (c) votre ami soit plus en retard que vous;
 - (d) vous attendiez votre ami plus de 40 minutes;
 - (e) vous attendiez votre ami entre 10 et 20 minutes.

Exercice 4

Soit X une variable aléatoire de densité f_X et fonction de répartition F_X . On suppose que $f_X(x) = 0$ si $x \notin [a, b]$. Comment cette propriété se traduit-elle sur F_X et sur X?

Exercice 5

En 1895, Vilfredo Pareto, un sociologue et économiste italien, étudie les problèmes liés à la répartition des richesses. Il en vient à énoncer ce qui deviendra le $Principe de Pareto^1$: "Le pourcentage de la population dont la richesse est plus grande qu'une valeur x est proportionnel à $1/x^{\alpha}$ ". Naturellement, $\alpha > 0$ ne dépend que de la société concernée, et la richesse minimale est toujours supposée strictement positive. Déterminer la densité qui régit la richesse des individus dans une société donnée.

¹La version initiale de ce principe portait en fait le nom de *Principe des 80-20* et s'énoncait ainsi : "20% des individus détiennent 80% des richesses".

Soit f la fonction définie par $f(x) = (ax^2 + b)\mathbf{1}_{[0,1]}(x)$.

- 1. A quelles conditions sur a et b la fonction f est-elle la densité d'une variable aléatoire à densité ?
- 2. On suppose que a et b vérifient les conditions déterminées à la question précédente. Soit X une variable aléatoire de densité f. On suppose que $\mathbb{P}(X \ge 0.5) = 7/8$. En déduire a et b.

Exercice 7

La durée de fonctionnement d'un composant électronique, exprimée en jours, est une variable aléatoire X dont la densité est de la forme $f_X(t) = at^2e^{-bt}$ si $t \ge 0$, et 0 sinon, où a, b sont des réels non nuls.

- 1. Pour quelle(s) valeurs de a et b la fonction f_X est-elle une densité ?
- 2. Déterminer une relation satisfaite par a pour que la probabilité que le composant dure plus de 100 jours soit plus grande que 1/2.
- 3. Pour quelles valeurs de a la médiane de la loi de X est-elle égale à 50 ?

Exercice 8

Pour chaque variable aléatoire réelle ci-dessous, calculer sa fonction de répartition et son premier quartile.

- 1. La variable aléatoire réelle X_1 qui possède pour densité $g_1(x) = \frac{1}{2}e^{-|x|}$.
- 2. La variable aléatoire réelle X_2 qui possède pour densité $g_2(x) = \frac{3}{2}\sqrt{x}\,\mathbf{1}_{[0,1]}(x)$.

Exercice 9

La taille des femmes françaises est distribuée selon une loi $\mathcal{N}(m, \sigma^2)$, où m = 1.58 et d'écart-type $\sigma = 0.06$. Pour produire un stock de vêtements, un fabricant souhaite utiliser cette loi.

- 1. Question préliminaire : si $X \sim \mathcal{N}(m, \sigma^2)$, montrer que $\frac{X-m}{\sigma} \sim \mathcal{N}(0, 1)$.
- 2. Il commence par déterminer un intervalle de la forme [m-a, m+a] (donc symétrique autour de la moyenne) contenant en moyenne 90% (environ) des tailles des femmes françaises. Calculer a.
- 3. Il en déduit 3 tailles, S, M et L, correspondant aux intervalles [m-a, m-a/3], [m-a/3, m+a/3] et [m+a/3, m+a]. Calculer le pourcentage de la production qui doit être affecté à chaque taille.

Exercice 10

Une machine découpe des disques dont le rayon, exprimé en centimètres, est réalisation d'une variable aléatoire de loi $\mathcal{E}(1/10)$. Calculer la probabilité qu'un disque ait une surface

- 1. au moins égale à 500 cm^2 .
- 2. au plus égale à 50 cm^2 .

Exercice 11

La baguette d'un chef d'orchestre mesure 1 mètre. Ce dernier la casse en choisissant au hasard un point de rupture selon une loi $\mathcal{U}([0,1])$. Quelle est la probabilité que l'un des 2 morceaux de baguette soit plus de 2 fois plus long que l'autre ?

Exercice 12

Soit X une variable aléatoire dont la loi possède une densité f_X . Calculer les densités des variables aléatoires suivantes : |X|, -X et aX + b.

Exercice 13

Soit X une variable aléatoire dont la loi possède pour densité

$$f_X(x) = \frac{2}{15}x\mathbf{1}_{[1,4]}(x).$$

Déterminer la densité de $(X-2)^2$ et ses quartiles.

Soit X une variable aléatoire réelle de densité $h(x) = 2xe^{-x^2}\mathbf{1}_{\mathbb{R}_+}(x)$. Calculer la densité de la variable aléatoire réelle $\varphi(X)$, où $\varphi: \mathbb{R} \to \mathbb{R}$ est définie par :

- 1. $\varphi(x) = 2x + 1$.
- 2. $\varphi(x) = x^2$.

Exercice 15

Soit $X \sim \mathcal{U}([0,1])$ et Z définie par

$$Z = \frac{1 - X}{X}.$$

- 1. Montrer que $1 X \sim \mathcal{U}([0, 1])$.
- 2. Déterminer la fonction de répartition de Z.
- 3. Montrer que la loi de Z possède une densité que l'on calculera. Calculer ses quantiles d'ordre $p \in]0,1[$.
- 4. Expliquer sans calcul pourquoi Z et 1/Z suivent la même loi.

Exercice 16

Soient $m \in \mathbb{R}$, a > 0 et X une variable aléatoire de loi de Cauchy de paramètres m et a, loi notée $\mathcal{C}(m, a)$, de densité

$$f_X(x) = \frac{a}{\pi(a^2 + (x - m)^2)}.$$

- 1. Vérifier que f_X est une densité. Quelle est sa médiane ?
- 2. Calculer la fonction de répartition de X.
- 3. Montrer que $\frac{X-m}{a} \sim \mathcal{C}(0,1)$.
- 4. On suppose que m=0 et a=1. Prouver que $1/X \sim \mathcal{C}(0,1)$.
- 5. Calculer les quantiles d'ordre $p \in]0,1[$ de X.

Exercice 17

Soit $X \sim \mathcal{N}(0,1)$. Calculer les densités des variables aléatoires X^2 et e^{X^2} .

Exercice 18

- 1. Soit X une variable aléatoire admettant une densité f_X et une fonction de répartition F_X strictement croissante. Montrer que $F_X(X) \sim \mathcal{U}([0,1])$.
- 2. Soit Y une v.a.r. à densité, de fonction de répartition F_Y strictement croissante, et $U \sim \mathcal{U}([0,1])$. Montrer que $F_Y^{-1}(U) \sim Y$, F_Y^{-1} désignant la fonction réciproque de F_Y .
- 3. Supposons que l'on sache simuler des réalisations de la loi uniforme sur [0,1]. Proposer une méthode pour simuler des réalisations de la loi de Y.

TD 2 : Espérance

Exercice 1

Est-il vrai que si X est une v.a.r. (à densité), $\mathbb{E}(1/X) = 1/\mathbb{E}(X)$? Et que $\mathbb{E}(X^2) = (\mathbb{E}(X))^2$?

Exercice 2

- 1. Calculer l'espérance et la variance d'une variable aléatoire de loi de densité $f_X(x) = \frac{1}{2}e^{-|x|}$.
- 2. Même question pour une variable aléatoire X de densité f_X telle que

$$f_X(x) = \begin{cases} -\frac{1}{x^3} & \text{si } x < -1\\ 0 & \text{si } x \in [-1, 1[\\ \frac{1}{x^3} & \text{si } x \ge 1 \end{cases}$$

Exercice 3

Soient $n \in \mathbb{N}^*$ et X une variable aléatoire dont la densité est définie par $f_X(x) = \frac{c}{(1+x^2)^n}$.

- 1. Pour quelles valeurs de $\alpha \in \mathbb{R}$ a-t-on $\mathbb{E}(|X|^{\alpha}) < \infty$?
- 2. Cas n=1. Dans ce cas, $c=1/\pi$ (cf exercice 16 de la feuille précédente). Pour toutes les valeurs de α pour lesquelles $\mathbb{E}(|X|^{\alpha}) < \infty$, montrer de 2 manières différentes que $\mathbb{E}(|X|^{\alpha}) = \mathbb{E}(|X|^{-\alpha})$ (pour l'une des méthodes, on pourra se référer à l'exercice 16 de la feuille précédente).

Exercice 4

On remplit un verre de volume 20 cl d'une quantité de bière choisie uniformément entre 0 et 20 cl.

- 1. Quelle est la probabilité d'obtenir moins de 5 cl de bière ?
- 2. On vide 5 verres ainsi remplis dans une très grande bassine. Quelle quantité moyenne de bière obtient-on dans cette bassine ?

Exercice 5

On suppose que la durée de vie d'un disque dur est distribuée selon une loi exponentielle. Le fabricant veut garantir que le disque dur a une probabilité inférieure à 0.001 de tomber en panne sur un an. Quelle durée de vie moyenne minimale doit avoir le disque dur?

Exercice 6

Soit X une variable aléatoire positive (i.e. $\mathbb{P}(X \ge 0) = 1$) dont la loi possède une densité.

1. En notant F_X sa fonction de répartition, montrer la relation suivante :

$$\mathbb{E}(X) = \int_0^\infty (1 - F_X(x)) dx.$$

2. Exprimer de même $\mathbb{E}(X^2)$ en fonction de F_X .

Exercice 7

Soit $X \sim \mathcal{N}(0, 1)$.

- 1. Calculer $\mathbb{E}(e^{\alpha X})$ pour tout $\alpha \in \mathbb{R}$.
- 2. Pour quelles valeurs de $\beta \in \mathbb{R}$ la variable aléatoire $e^{\beta X^2}$ possède-t-elle une moyenne ? Calculer cette moyenne lorsqu'elle existe.

- 3. Montrer que pour tout $k \geq 0$, $\mathbb{E}(X^{2k+1}) = 0$.
- 4. A l'aide d'une intégration par parties, montrer que pour tout $n \in \mathbb{N}$: $\mathbb{E}(X^{n+2}) = (n+1)\mathbb{E}(X^n)$. Que valent $\mathbb{E}(X^2)$ et $\mathbb{E}(X^4)$?
- 5. Soit $n \in \mathbb{N}$ un nombre pair. En utilisant un raisonnement par récurence, calculer $\mathbb{E}(X^n)$.

La durée de vie, en années, d'un composant électronique est représentée par une loi exponentielle de paramètre $\theta > 0$. L'exploitant a une politique le conduisant à changer systématiquement tout composant dont la durée de vie atteint 5 ans. Soit X la variable aléatoire donnant la durée de vie d'un composant.

- 1. Soit E une variable aléatoire de loi $\mathcal{E}(\theta)$. Exprimer X en fonction de E.
- 2. X est-elle une variable aléatoire à densité?
- 3. Calculer la moyenne et la variance de X.

Exercice 9

Une variable aléatoire suit une loi de Weibull de paramètres $\alpha, \beta > 0$, notée $\mathcal{W}(\alpha, \beta)$, si sa densité est

$$f_X(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}} \mathbf{1}_{\mathbb{R}_+}(x).$$

- 1. Vérifier que f_X est une densité, et déterminer la fonction de répartition de X.
- 2. Montrer que X admet des moments de tous ordres.
- 3. Calculer le moment d'ordre 1 de la loi $\mathcal{W}(\alpha, 2)$.

Exercice 10

Soit X une variable aléatoire de loi possédant une densité f_X et un moment d'ordre 2. Montrer que, pour tout $a \in \mathbb{R}$,

$$var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) \le \mathbb{E}((X - a)^2).$$

Commenter cette inégalité.

Exercice 11

Soit $X \sim \mathcal{E}(\lambda)$.

- 1. Calculer $\mathbb{E}(X)$ et var(X).
- 2. Déterminer la fonction de répartition, puis la médiane et le quantile d'ordre 0.95 de la loi de X. Représenter graphiquement ces quantiles dans le cas $\lambda = 1$, tout d'abord à l'aide de la fonction de répartition de la loi exponentielle, puis avec la densité de cette loi.
- 3. Montrer que $\lambda X \sim \mathcal{E}(1)$. Quelle est la loi de $-\lambda X$?
- 4. Montrer que $\mathbb{P}(X > \mathbb{E}(X))$ est indépendante de λ .

Exercice 12

Soit X une variable aléatoire réelle de densité $f(x) = \frac{3}{2}\sqrt{x}\,\mathbf{1}_{[0,1]}(x)$.

- 1. Soit $k \in \mathbb{N}$. Calculer $\mathbb{E}(X^k)$.
- 2. Calculer $\mathbb{E}\left(\frac{1}{\sqrt{X}}\right)$.
- 3. Calculer $\mathbb{E}(e^X)$.

Exercice 13

Soit $X \sim \mathcal{N}(0,1)$. On rappelle que $\mathbb{E}(X^3) = 0$ et $\mathbb{E}(X^4) = 3$.

- 1. Soit Y = 2X + 1.
 - (a) Calculer la loi de Y.
 - (b) Déterminer $\mathbb{E}(Y^4)$.
- 2. Soit $Z \sim \mathcal{N}(m, \sigma^2)$.
 - (a) En utilisant la méthode des fonctions tests, montrer que $\frac{Z-m}{\sigma}$ a même loi que X.
 - (b) En déduire $\mathbb{E}(Z)$, $\mathbb{E}(Z^2)$, $\mathbb{E}(Z^3)$ et $\mathbb{E}(Z^4)$.

Soient $X \sim \mathcal{U}([0,1])$ et $\lambda > 0$.

- 1. Calculer $\mathbb{E}(\ln(1-X))$.
- 2. Calculer la loi de la variable aléatoire $-\frac{1}{\lambda}\ln(1-X)$, tout d'abord avec la fonction de répartition, puis avec la méthode des fonctions tests. Retrouver sans calcul le résultat de la question précédente.

Exercice 15

Une machine découpe des cubes dont les côtés sont, en centimètre, des réalisations d'une loi normale de moyenne 1 et variance 0.1.

- 1. Discuter de la pertinence du modèle.
- 2. On note V la variable aléatoire représentant le volume des cubes. Donner la densité de V.
- 3. Calculer la moyenne du volume des cubes ainsi usinés.
- 4. Calculer l'écart-type du volume des cubes ainsi usinés.

Exercice 16

Soient $\lambda > 0$ et X une variable aléatoire dont la loi possède pour densité

$$f_X(x) = \lambda^2 x e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x).$$

- 1. Vérifier que f_X est bien une densité.
- 2. En utilisant la méthode des fonctions tests, calculer les densités des variables aléatoires λX , 1/X, X^2 et \sqrt{X} .
- 3. Calculer l'espérance et la variance de X^2 .

Exercice 17

Une variable aléatoire X de densité inconnue a une espérance égale à 10 et un écart-type égal à 5. Montrer que pour tout $n \ge 50$, $\mathbb{P}(10 - n < X < 10 + n) \ge 0.99$.

TD 3 : Couples de variables aléatoires

Exercice 1

Soit (X,Y) un couple de v.a.r. de densité $f(x,y) = c(x+y)\mathbf{1}_{[0,1]^2}(x,y)$.

- 1. Que vaut c?
- 2. Calculer $\mathbb{P}(X \leq 1/2)$ et $\mathbb{P}(X + Y > 1)$.

Exercice 2

Deux rivières A et B alimentent un réservoir. Le débit des 2 rivières (en centaines de m^3) est modélisé par X pour A et Y pour B, et le couple (X,Y) possède pour densité

$$f(x,y) = c(6-x-y)\mathbf{1}_{[0,4]\times[0,2]}(x,y).$$

- 1. Que vaut c?
- 2. Calculer les débits moyens et les médianes de A et B.
- 3. Quelle est la probabilité que le débit de A soit plus du double de celui de B?

Exercice 3

On considère un couple de v.a.r. (X,Y) dont la densité est donnée par

$$f(x,y) = k\left(\frac{1}{x^2} + y^2\right)\mathbf{1}_{[1,5]\times[-1,1]}(x,y).$$

- 1. Pour quelle valeur de k la fonction f est-elle bien une densité?
- 2. Calculer les densités marginales de X et de Y.
- 3. Déterminer la covariance de X et Y.

Exercice 4

- 1. Soit X une v.a.r. à densité, telle que X^2 est intégrable et $\mathbb{E}(X)=0$. Si Y=3X-2, calculer $\mathrm{var}(Y)$ et $\mathrm{cov}(X,Y)$.
- 2. Si $X \sim \mathcal{N}(0,1)$, calculer $cov(X,X^2)$.

Exercice 5

On suppose que le temps de trajet quotidien X et le temps de loisirs hebdomadaire Y d'une personne forment un couple de v.a.r. (X,Y) dont la densité est

$$f(x,y) = cx \left(10 - \frac{xy}{3}\right) \mathbf{1}_{[0,3] \times [0,10]}(x,y).$$

- 1. Déterminer c.
- 2. Trouver les densités marginales de X et Y.
- 3. Calculer les espérances, variance et covariance de X et Y.

Exercice 6

Soit (X,Y) un couple de v.a.r. de densité f telle que $f(x,y)=ke^{6xy-2x^2-5y^2}$.

- 1. Déterminer k.
- 2. Calculer les lois marginales de X et Y.
- 3. Que valent les moyennes et variances de X et Y?
- 4. Que vaut la covariance entre X et Y?

Dans la forêt de Brocéliande, on modélise le diamètre d'un arbre par une v.a.r. X, et sa hauteur par une autre v.a.r. Y. La loi jointe de X et Y est donnée par la densité $f_{X,Y}(x,y) = \frac{1}{4}(x+y)e^{-y}\mathbf{1}_{[0,2]\times\mathbb{R}_+}(x,y)$.

- 1. Vérifier que $f_{X,Y}$ est une densité sur \mathbb{R}^2 .
- 2. Donner les densités marginales de X et Y.
- 3. Déterminer les médianes de X et de Y.
- 4. Calculer le diamètre et la hauteur moyenne des arbres.
- 5. Que vaut la covariance entre X et Y?
- 6. L'âge d'un arbre est 12XY. Calculer l'âge moyen des arbres.

Exercice 8

Soit (X,Y) un couple de v.a.r. de densité

$$f(x,y) = \frac{ye^{-y^2/2}}{\pi\sqrt{1-x^2}} \mathbf{1}_{]-1,1[\times\mathbb{R}_+^*}(x,y).$$

- 1. Montrer que $(XY)^2$ est intégrable (pour alléger les calculs, on pourra noter que $\mathbb{P}(|X| \leq 1) = 1$).
- 2. Prouver que $\mathbb{E}(XY) = 0$ et $\mathbb{E}(X^2Y^2) = 1$.

Exercice 9

Soit (X,Y) un couple de v.a.r. de densité

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right),$$

avec $\rho \in [0,1[$.

- 1. Vérifier que f est une densité sur \mathbb{R}^2 .
- 2. Trouver les densités marginales de X et Y.
- 3. Calculer cov(X, Y).
- 4. Que remarque-t-on pour ρ tel que cov(X,Y)=0?

Exercice 10

Soient $\theta > 0$ et (X, Y) un couple de v.a.r. de densité $f(x, y) = \theta^2 e^{-\theta y} \mathbf{1}_{\{0 \le x \le y\}}$.

- 1. Vérifier que f est une densité sur \mathbb{R}^2 .
- 2. Pour $i, j \in \mathbb{N}$, calculer $\mathbb{E}(X^iY^j)$. En déduire la covariance entre X et Y.
- 3. Calculer la densité de X + Y.
- 4. On pose U = X + Y et V = Y X.

- (a) Déterminer la densité du couple (U, V).
- (b) En déduire la densité de V.
- (c) Que vaut cov(U, V)?
- 5. On veut calculer la densité de la v.a.r. X/Y.
 - (a) Calculer la densité du couple (X, X/Y).
 - (b) En déduire la densité de X/Y.

Soit (X,Y) un couple de v.a.r. à densité, et tel que X^2 et Y^2 sont intégrables. On note P la fonction telle que pour tout $\lambda \in \mathbb{R}$, $P(\lambda) = \mathbb{E}((\lambda X + Y)^2)$.

- 1. Question préliminaire : soit U une v.a.r. à densité et intégrable. Montrer que si $\mathbb{P}(U \geq 0) = 1$, alors $\mathbb{E}(U) \geq 0$.
- 2. Montrer que la v.a.r. $(\lambda X + Y)^2$ est intégrable.
- 3. Prouver que P est un polynôme de degré 2 qui admet au plus une racine réelle.
- 4. En déduire l'inégalité de Cauchy-Schwarz : $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$.

Exercice 12

Soient $N \sim \mathcal{N}(0,1)$ et (S,B) un couple de v.a.r. de densité

$$f_{S,B}(s,b) = \frac{2(2s-b)}{\sqrt{2\pi}} e^{-\frac{1}{2}(2s-b)^2} \mathbf{1}_{\{s \ge 0, b \le s\}}.$$

Etablir les égalités en loi suivantes :

- 1. $S \sim |N|$;
- 2. $B \sim N$;
- 3. $S B \sim |N|$.

Exercice 13

On veut modéliser la taille (en cm.) et le poids (en g.) des rouge-gorges. On considère que le couple de v.a.r. (taille, poids) suit une densité normale bivariée de paramètres (μ, Σ) , où

$$\mu = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$
 et $\Sigma = \begin{pmatrix} s & s \\ s & 2s \end{pmatrix}$,

avec $a, b \in \mathbb{R}$ et s > 0.

- 1. Calculer les matrices Σ^{-1} et $\Sigma^{-1/2}$.
- 2. Montrer que $\Sigma^{-1/2}({X \choose Y} \mu) \sim \mathcal{N}(0, \mathrm{Id}).$
- 3. En déduire les espérances et variances de X et Y en fonction de m_1, m_2 et s.
- 4. Les ornithologues ont observé que la moyenne des tailles est 13 cm, celle de leur poids est 20 g, avec un écart-type pour la taille de 2 cm. Calculer les paramètres m_1, m_2 et s. Que vaut la covariance entre la taille et le poids ?

TD 4: Indépendance

Exercice 1

Soit (X,Y) un couple de v.a.r. de densité $f(x,y) = kx^2y\mathbf{1}_{[-1,1]\times[0,1]}(x,y)$. Que vaut k? Les v.a.r. X et Y sont-elles indépendantes?

Exercice 2

Soient $D = \{(x,y) \in \mathbb{R}^2 : 0 < x \le y \le 1\}$ et (X,Y) un couple de v.a.r. de densité

$$f(x,y) = \frac{1}{2\sqrt{xy}} \mathbf{1}_D(x,y).$$

- 1. Calculer les densités marginales de X et Y.
- 2. Calculer la covariance de X et Y. Les variables X et Y sont-elles indépendantes ?

Exercice 3

On veut modéliser la rupture d'une chaîne moléculaire. Dans ce but, on note L une v.a.r. de densité f telle que f(x) = 0 si $x \le 0$; L modélise la longueur initiale de la molécule. Puis, on introduit une v.a.r. $X \sim \mathcal{U}([0,1])$, indépendante de L. Enfin, on note $L_1 = XL$ et $L_2 = (1-X)L$, qui donnent les longueurs des morceaux de la molécule une fois rompue.

- 1. Donner la densité du couple (L_1, L_2) , puis les densités marginales de L_1 et L_2 .
- 2. Que peut-on dire de la densité de (L_1, L_2) lorsque $f(x) = \lambda^2 x e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x)$?
- 3. Déterminer la densité de $min(L_1, L_2)$ dans ce cas.

Exercice 4

Soient X et Y deux v.a.r. indépendantes telles que $X \sim Y \sim \mathcal{N}(0,1)$, et $a,b \in \mathbb{R}$ vérifiant $a^2 + b^2 = 1$. Montrer que les v.a.r. U = aX + bY et V = bX - aY sont indépendantes et de même loi $\mathcal{N}(0,1)$.

Exercice 5

Deux composants électroniques A et B sont montés dans un circuit. La durée de vie du composant A suit une loi $\mathcal{E}(\lambda_A)$, celle du composant B suit une loi $\mathcal{E}(\lambda_B)$, et on suppose que les états de fonctionnement de A et B sont indépendants. On considère que le circuit fonctionne lorsque le courant passe de part et d'autre du module constitué de A et B.

- 1. Calculer la densité de la durée de fonctionnement du circuit lorsque A et B sont montés en série.
- 2. Même question lorsque A et B sont montés en parallèle.
- 3. Quelle est la probabilité que les durées de vie des circuits en série et en parallèle soient les mêmes?
- 4. Déterminer la probabilité que la durée de vie du circuit monté en parallèle (resp. en série) soit égale à la durée de vie du composant A.

Exercice 6

Soient X et Y des v.a.r. indépendantes et de même loi $\mathcal{E}(\lambda)$. On considère

$$U = X + Y$$
 et $V = \frac{X}{X + Y}$.

- 1. Calculer la densité du couple (U, V).
- 2. En déduire les densités marginales de U et V.
- 3. Prouver que U et V sont indépendantes.