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Abstract Interval exercise typically involves repeated bouts of relatively intense exercise inter-
spersed by short periods of recovery. A common classification scheme subdivides this method
into high-intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training
(SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological
adaptations characteristic of moderate-intensity continuous training (MICT) such as increased
aerobic capacity (V̇O2max) and mitochondrial content. This brief review considers the role of
exercise intensity in mediating physiological adaptations to training, with a focus on the capacity
for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the
resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with
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limited work suggesting that increases in mitochondrial content are superior after HIIT compared
to MICT, at least when matched-work comparisons are made within the same individual. It is
well established that SIT increases mitochondrial content to a similar extent to MICT despite a
reduced exercise volume. At the whole-body level, V̇O2max is generally increased more by HIIT
than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2max despite
differences in training volume. There is less evidence available regarding the role of exercise
intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and
cardiac output, and blood volume. Furthermore, the interactions between intensity and duration
and frequency have not been thoroughly explored. While interval training is clearly a potent
stimulus for physiological remodelling in humans, the integrative response to this type of exercise
warrants further attention, especially in comparison to traditional endurance training.

(Received 28 July 2016; accepted after revision 11 October 2016; first published online 17 October 2016)
Corresponding author M. J. Gibala: Department of Kinesiology, McMaster University, 1280 Main St West, Hamilton,
ON, L8S 4K1, Canada. Email: gibalam@mcmaster.ca

Abstract figure legend Physiological responses to acute and chronic exercise are mediated by characteristics of the
training programme. Training volume is the product of the frequency, intensity, and duration of exercise. The format
of the training programme, although often complex, can generally be characterized as moderate-intensity continuous
training (MICT), high-intensity interval training (HIIT), or sprint interval training (SIT). Characteristics of the training
programme influence the magnitude of the skeletal muscle, cardiovascular and integrative adaptations to exercise.
In particular, there is strong evidence that exercise intensity mediates mitochondrial adaptations to exercise and
improvements in maximum aerobic capacity (V̇O2max); however, the influence of exercise intensity is uncertain for
specific cardiovascular adaptations, including capillarization, maximum cardiac output and stroke volume, and blood
volume.

Abbreviations AMPK, AMP-activated protein kinase; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CS,
citrate synthase; CK, creatine kinase; COXIV, cytochrome c oxidase subunit IV; ETC, electron transport chain;
PHOS, glycogen phosphorylase; HIIT, high-intensity interval training; V̇O2max, maximum aerobic capacity; MICT,
moderate-intensity continuous training; OXPHOS, oxidative phosphorylation; V̇O2peak, peak aerobic capacity; p38
MAPK, p38 mitogen-activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor γ 1-α; ROS, reactive
oxygen species; SIT, sprint interval training; SDH, succinate dehydrogenase; VEGF, vascular endothelial growth factor.

Introduction

Exercise is traditionally defined as either endurance or
strength or viewed as a continuum anchored by these
common descriptors (Coffey & Hawley, 2007; Hawley
et al. 2014). In accordance with the principle of training
specificity, endurance training is associated with an
improved capacity for aerobic energy metabolism and
fatigue resistance, whereas strength training is linked
to muscle hypertrophy and increased force-generating
capacity (Baar, 2006; Egan & Zierath, 2013; Hawley et al.
2014). Interval training, which can be simply defined as
intermittent periods of intense exercise separated by peri-
ods of recovery (Fox et al. 1973), occupies a sort of middle
ground. Depending on the specific protocol employed,
this type of training can elicit adaptations resembling
endurance or strength training, or a mix of the two. For
example, interval training using repeated Wingate tests
is a potent stimulus to increase mitochondrial content
and peak aerobic capacity (V̇O2peak; MacDougall et al.
1998) while interval training using body-weight resistance
exercise increases V̇O2peak and muscular strength (McRae

et al. 2012). This review will focus on the potential for
interval training to elicit physiological adaptations that
enhance aerobic energy metabolism.

Interval training terminology. Exercise prescription is
obviously complex and involves numerous variables that
can be manipulated, as evidenced by detailed reviews that
have characterized interval training from the perspective
of performance enhancement (Seiler, 2010; Tschakert
& Hofmann, 2013; Buchheit & Laursen, 2013a,b). For
simplicity and consistency, this review will employ the
nomenclature put forward by Weston et al. (2014a) to
differentiate two basic types of interval training based on
exercise intensity (Fig. 1). High-intensity interval training
(HIIT) is defined as ‘near maximal’ efforts generally
performed at an intensity that elicits � 80% (but often
85–95%) of maximal heart rate. In contrast, sprint inter-
val training (SIT) is characterized by efforts performed
at intensities equal to or greater than the pace that would
elicit V̇O2peak, including ‘all-out’ or ‘supramaximal’ efforts.
The term moderate intensity continuous training (MICT)
is used for comparative purposes to describe exercise that is

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Figure 1. A graphical depiction of the main types of aerobic exercise
A–C, representative examples of moderate intensity continuous training (MICT), high-intensity interval training
(HIIT), and low and high volumes of sprint interval training (SIT). The intensity is depicted as a percentage of
the peak power output (PPO) obtained during a standard ramp V̇ O2peak test (e.g. MacInnis et al. 2016). Note
that most recent studies of SIT used a low-volume protocol (e.g. Burgomaster et al. 2006, 2008), whereas earlier
studies of SIT used a high-volume protocol (e.g. Saltin et al. 1976). D, the training volume associated with each
protocol based on the durations and training frequencies provided. The MICT and HIIT protocols shown in A and
B are work-matched when performed for the same duration and at the same frequency. The low-volume SIT
protocol requires less total work to complete relative to HIIT and MICT, whereas performing three sessions of the
high-volume SIT protocol matches the training volume in the MICT and HIIT protocols.
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performed in a continuous manner and at lower intensities
than HIIT. While imperfect, this general classification
scheme is nonetheless suitable for our purposes here.

Assessing physiological adaptations to interval training.
A fundamental and longstanding focus of exercise physio-
logy has been the elucidation of the mechanisms under-
lying training adaptations. Of particular relevance to
the present discussion, improvements in aerobic energy
metabolism are primarily linked to peripheral adaptations,
including increased skeletal muscle mitochondrial content
and capillary density (Holloszy & Coyle, 1984), and central
factors such as increased maximal stroke volume, maximal
cardiac output and blood volume (Blomqvist & Saltin,
1983; Bassett & Howley, 2000). These variables generally
respond to changes in exercise volume, which is the
product of exercise intensity (i.e. work per unit time),
exercise duration (i.e. time per session), and training
frequency (i.e. sessions per week), as shown in Fig. 1.
This review will consider the role of exercise intensity and
its interaction with duration and frequency in mediating
physiological adaptations to interval training in humans.
Given our primary expertise and the data available,
emphasis will be placed on skeletal muscle remodelling
with a focus on the regulation of mitochondrial biogenesis.
A large body of research has evaluated the effect of
interval training on maximum aerobic capacity (V̇O2max;
Bacon et al. 2013; Gist et al. 2013; Sloth et al. 2013),
but data are limited regarding the underlying cardio-
vascular mechanisms involved. Finally, given our focus
on physiological adaptations in healthy (albeit sometimes
sedentary or overweight) populations, the reader is
directed elsewhere for recent reviews regarding the effect
of interval training on health-related markers and disease
risk (Gibala et al. 2012; Kessler et al. 2012; Weston et al.
2014a; Jelleyman et al. 2015; Ramos et al. 2015).

Skeletal muscle adaptation to interval exercise
training

Mitochondrial responses to exercise and their time
course. Skeletal muscle mitochondrial density regulates
substrate metabolism during submaximal exercise, with
increased mitochondrial content promoting a greater
reliance on fat oxidation and a proportional decrease
in carbohydrate oxidation (Holloszy & Coyle, 1984;
Egan & Zierath, 2013). As a result, exercise training
lessens glycogen degradation and lactate production at a
given intensity, while increasing the lactate threshold and
allowing individuals to exercise for longer durations and
at greater percentages of their V̇O2max (Joyner & Coyle,
2008). Thus, given its central role in exercise performance,
there is considerable interest in the factors mediating
exercise-induced mitochondrial adaptations (Bishop et al.
2014).

A variety of methods are available for investigating
the effects of exercise on skeletal muscle mitochondria
in humans. In general, acute studies measure changes
in the phosphorylation state of signalling proteins (e.g.
Ca2+/calmodulin-dependent protein kinase II (CaMKII),
AMP-activated protein kinase (AMPK), p38 mitogen
activated protein kinase (p38 MAPK)), gene expression
(e.g. peroxisome proliferator-activated receptor γ 1-α
(PGC-1α)), or mitochondrial protein synthesis rates.
Training studies usually assess the volume or area of
mitochondria via microscopy, the activity or protein
content of mitochondrial enzymes (e.g. citrate synthase
(CS) and succinate dehydrogenase (SDH)), or respiration
in permeabilized muscle fibres or isolated mitochondria
(e.g. oxidative phosphorylation (OXPHOS) capacity).
While mitochondrial respiration is sometimes considered
a measure of mitochondrial function and not content,
OXPHOS capacity is a biomarker of mitochondrial density
(Larsen et al. 2012). Furthermore, enzyme activity (CS or
COX) and OXPHOS capacity generally increase similarly
in training studies, suggesting that mitochondrial function
(i.e. respiration per unit of mitochondria) is not altered in
the short-term (Jacobs et al. 2013; MacInnis et al. 2016). In
contrast, mitochondrial function correlates with aerobic
capacity in cross-sectional studies (Jacobs & Lundby,
2013), indicating a potential long-term effect of training.
The reader is directed elsewhere for detailed reviews on
the signalling pathways associated with mitochondrial
biogenesis (Scarpulla et al. 2012; Egan & Zierath, 2013)
and the methodology available for assessing mitochondrial
responses to exercise in humans (Larsen et al. 2012; Miller
& Hamilton, 2012).

The relatively rapid rate at which mitochondrial content
responds to training permits relatively short-term studies
of mitochondrial adaptations in humans. Similar to
MICT, a single session of HIIT or SIT activates signalling
pathways associated with mitochondrial biogenesis, such
as the phosphorylation of AMPK and p38 MAPK and
the expression of PGC-1α mRNA (Gibala et al. 2009;
Little et al. 2011; Metcalfe et al. 2015). The regular and
repeated activation of these pathways leads to increases
in mitochondrial density (Coffey & Hawley, 2007). A
comprehensive study by Perry et al. (2010) examined the
early time course of adaptations to HIIT and showed that
mRNA expression (e.g. PGC-1α) was acutely and trans-
iently increased following each session of HIIT. CS protein
content and enzyme activity increased steadily over the
seven sessions, with CS maximal activity significantly
increased above baseline after the third session. Other
studies have reported significant increases in CS activity
24 h after a single session of SIT (Little et al. 2011) or MICT
(Egan et al. 2013). Numerous studies have demonstrated
that mitochondrial content (measured with CS or COX
activity) increased by �25–35% after six to seven sessions
of HIIT (Talanian et al. 2006; MacInnis et al. 2016) or
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SIT (Burgomaster et al. 2006; Gibala et al. 2006). When
the intensity and duration of exercise are held constant,
mitochondrial content has been shown to plateau after
�5 days of training (Egan et al. 2013); however, when the
intensity is increased progressively, mitochondrial content
continues to rise for at least several weeks (Henriksson &
Reitman, 1977).

Exercise intensity mediates acute mitochondria-related
responses to exercise. The molecular and cellular events
that underpin adaptations to exercise are fundamental
aspects of exercise biology (Egan & Zierath, 2013; Hawley
et al. 2014), and the responsiveness of these pathways to
divergent exercise stimuli is essential for understanding
the process through which humans adapt to exercise (Baar,
2006; Coffey & Hawley, 2007; Baar, 2009). Cellular stress
occurs in proportion to exercise intensity (Egan & Zierath,
2013), and there is strong evidence that higher intensities
of exercise elicit a greater metabolic signal than moderate
intensities (Fig. 2). Firstly, ATP turnover is greater for
higher intensities of exercise (Howlett et al. 1998), which
also rely more on carbohydrate oxidation and utilize more
glycogen than do lower intensities of exercise (Gollnick
et al. 1974; Vøllestad & Blom, 1985; Romijn et al. 1993;
van Loon et al. 2001). Consequently, the accumulation
of intracellular lactate, creatine, AMP and ADP increases
with exercise intensity (Howlett et al. 1998; van Loon et al.
2001), as do the activity of AMPK (Wojtaszewski et al.
2000; Egan et al. 2010; Kristensen et al. 2015) and CaMKII
(Rose & Hargreaves, 2003; Rose et al. 2006; Egan et al.
2010). The greater activation of these particular kinases,
which was elicited by high- compared to low-intensity
exercise matched for total work, was associated with
greater expression of mRNA for PGC-1α, a major regulator
of mitochondrial biogenesis (Egan et al. 2010). Finally, and
downstream of the myriad metabolic signals described
above, mitochondrial protein synthesis was greater in
response to continuous exercise performed at a higher
intensity relative to work-matched exercise performed at a
lower intensity (Di Donato et al. 2014), signifying a greater
rate of mitochondrial biogenesis when a given volume of
exercise is performed at a higher intensity.

With respect to low-volume SIT in particular, two
recent studies suggest that the activation of mitochondrial
biogenesis in response to all-out exercise may be
linked in part to the production of reactive oxygen
species (ROS; Fig. 2). Six bouts of Wingate-based SIT
induced ROS-dependent fragmentation of the ryanodine
receptor (RyR), which was implicated in the post-exercise
increase in intracellular Ca2+ concentration, a signal for
mitochondrial biogenesis (Place et al. 2015). Additionally,
Larsen et al. (2016) reported that 2 weeks of Wingate-based
SIT inhibited aconitase activity through an increase in
ROS. The inhibition of this tricarboxylic acid cycle
enzyme was associated with reduced respiration in

isolated mitochondria, which the authors hypothesized
was compensated through an increase in mitochondrial
content in the vastus lateralis muscle. Whether different
durations or intensities of exercise are capable of activating
these ROS-dependent mechanisms to similar extents, or
at all, remains unknown.

The on-and-off pattern characteristic of interval
training (i.e. rest–work cycles) could partially explain
skeletal muscle responses to this type of exercise.
AMPK phosphorylation was greater when a session of
moderate-intensity exercise was divided into 1 min inter-
vals, interspersed with rest, compared to when it was
performed as a continuous 30 min session (Combes et al.
2015); however, whether or not these acute differences
in signalling patterns would translate to different chronic
effects is unclear. Research from our group suggests that
the intermittent nature of interval training plays a role in
the magnitude of the adaptations. We demonstrated that
CS maximal activity was unchanged by performing a single
4 min all-out bout of cycling 3 days week–1 for 6 weeks,
despite being increased in response to approximately the
same volume of work performed as four 30 s all-out
bouts, interspersed with recovery periods (Cochran et al.
2014).

The role of exercise intensity in mediating mitochondrial
adaptations to training. Training volume has been
suggested to be a primary determinant of the exercise-
induced increase in mitochondrial content in humans
(Bishop et al. 2014). Supporting evidence in this regard
was derived mainly from correlations based on studies
that measured CS maximal activity before and after
exercise programmes of different lengths rather than
work-matched HIIT and MICT protocols or studies
that compared relatively low volumes of SIT and high
volumes of MICT. Given the limitations inherent to
making inferences based on a small pool of studies
with methodological differences, the authors called
for additional research in humans comparing different
training stimuli within the same study. The training studies
included in this section are described in greater detail in
Table 1.

We recently examined the role of exercise intensity
in determining mitochondrial adaptations to short-term
training. Cognizant of the classic study design by Saltin
and colleagues (1976), we employed single-leg cycling as
a model to examine the effect of two different training
interventions within the same individual. Participants
performed six training sessions with each leg over
2 weeks, with one leg performing HIIT and the other
leg performing MICT (MacInnis et al. 2016). A weight
was affixed to the contralateral crank arm during exercise,
providing the ‘feel’ of two-legged cycling, even though
participants trained with only one leg at a time (Abbiss
et al. 2011; Burns et al. 2014). Importantly, the volume

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Figure 2. A schematic diagram of the putative mechanisms through which high-intensity exercise may
elicit greater mitochondrial adaptations to aerobic training compared to lower intensities of exercise
Exercising at a higher intensity increases calcium release (A), requires greater ATP turnover (B), and leads to
greater use of carbohydrates for fuel (C), compared to exercising at a lower intensity. As a result, there is
a greater accumulation of metabolites, ions, and free radicals (D), which increase the activation of signalling
proteins (E), including the kinases Ca2+/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated
protein kinase (AMPK). The increased activity of these protein kinases causes greater rates of gene expression
for PGC-1α (encoded by PPARGC1A), which in turn acts as a transcriptional co-activator for nuclear genes
encoding mitochondrial proteins (NUGEMPs; F). In turn, mitochondrial protein synthesis rates are greater for
high-intensity exercise (G), leading to a greater increase in mitochondrial content (H), relative to exercise at a
lower intensity. Two additional ROS-mediated mechanisms explaining the potency of low-volume SIT have recently
been reported. Firstly, through a ROS-dependent mechanism, low-volume SIT led to the fragmentation of the
ryanodine receptor (RyR) of the sarcoplasmic reticulum and increased the intracellular calcium concentration (I),
a signal for mitochondrial biogenesis. Similarly, two weeks of low-volume SIT was associated with the inhibition
of aconitase in the tricarboxylic acid cycle (TCA) and an increased intracellular citrate concentration, which was
suggested to increase mitochondrial content via a reduction in mitophagy (J). For specific references, see ‘Exercise
intensity mediates acute mitochondria-related responses to exercise’ in text. ACN, aconitase; ATPase, adenosine
triphosphatase; CK, creatine kinase; ETC, electron transport chain; PHOS, glycogen phosphorylase; HK, hexokinase;
LDH, lactate dehydrogenase; MK, myosin kinase; PFK, phosphofructokinase; PDH, pyruvate dehydrogenase; TFAM,
transcription factor A, mitochondria.
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of training was identical for each leg. We showed that
HIIT compared to MICT elicited a greater increase in
mitochondrial content, assessed by CS maximal activity
and OXPHOS capacity in permeabilized muscle fibres
(Fig. 3). Mitochondrial function (i.e. OXPHOS capacity
normalized to CS maximal activity) was unchanged with
training.

Our recent findings are supported by a crossover study
that compared work-matched HIIT and MICT in the
same individuals (Daussin et al. 2008). In that study,
the high-intensity programme elicited an increase in
skeletal muscle mitochondrial respiration whereas the
moderate-intensity programme did not. In the three
comparisons of work-matched HIIT and MICT that
used parallel-group designs, increases in mitochondrial
content were similar (Henriksson & Reitman, 1976;
Bækkerud et al. 2016) or not observed (Granata et al.
2015). Work-matched comparisons addressing the effect
of intensity on lactate threshold generally report similar
increases across groups as well (Poole & Gaesser, 1985;
Helgerud et al. 2007; Granata et al. 2015). Sample sizes
were relatively small in all of the above work-matched
studies; however, within-subject comparisons provide
greater control for potential sources of variation (e.g.
diet, sleep, stress) and greater statistical power than
between-subject comparisons. We suggest that the lack of
consensus among these studies is partly due to differences
in experimental design.

Supporting evidence for the role of exercise intensity
is derived from studies reporting that a small volume of
exercise performed at a very high intensity can elicit similar
skeletal muscle adaptations compared to a large volume

of moderate-intensity exercise. Comparable increases in
mitochondrial content were reported for low-volume SIT
and MICT after 2 (Gibala et al. 2006), 6 (Burgomaster
et al. 2008; Shepherd et al. 2012; Scribbans et al. 2014)
and 12 (Gillen et al. 2016) weeks of training. In the
longest of these comparisons, we demonstrated that
three weekly sessions of SIT (1 min of intense exercise
performed over a 10 min session) elicited similar increases
in CS maximal activity compared to a MICT protocol
that involved 150 min of weekly exercise (Gillen et al.
2016). Furthermore, low-volume SIT induced similar
improvements relative to MICT for multiple aspects of
fat and carbohydrate metabolism (Gibala et al. 2006;
Burgomaster et al. 2008; Shepherd et al. 2012; Scribbans
et al. 2014). When low-volume SIT was compared to
a higher volume of HIIT, an increase in mitochondrial
respiration was only apparent following SIT (Granata
et al. 2015). Interestingly, CS activity did not increase for
either condition in that study. Finally, low-volume SIT
increased lactate threshold, a variable strongly associated
with skeletal muscle mitochondrial content (Ivy et al.
1980), to a similar extent relative to greater volumes of
MICT and HIIT (McKay et al. 2009; Granata et al. 2015).

Observations from studies comparing high-volume SIT
and MICT suggest that there are diminishing returns
with increased durations of SIT (i.e. number of bouts per
session). Comparisons of work-matched SIT and MICT
resulted in similar increases in SDH maximal activity after
4 weeks (Saltin et al. 1976) or greater increases in CS
maximal activity for MICT relative to SIT after 8 weeks
of training (Gorostiaga et al. 1991). The total duration
of sprint exercise performed in both of these studies
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Figure 3. Changes in mitochondrial content in response to 2 weeks of high-intensity interval training
(HIIT) and moderate-intensity continuous training (MICT), matched for total work
Subjects performed six sessions of single-leg cycling with each leg, completing either a HIIT or MICT protocol. The
greater increase in mitochondrial content elicited by HIIT as compared to MICT was evident from post-training
differences in maximal citrate synthase activity (A) and mitochondrial respiration (JO2 ), specifically oxidative
phosphorylation capacity through complexes I and II (PCI&CII, B). Bars represent the mean responses for each
group, whereas lines refer to the responses of individual subjects. Symbols indicate a significant difference from
the within-group, pre-training mean (§), and significant differences between groups at the post-training mean (†).
Error bars represent 1 standard error of the mean. For A, n = 9 and for B, n = 8 subjects.
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(10–25 min; 20–30 bouts) was much higher than recent
studies (�1–3 min; 3–6 bouts). Note that in both studies,
the two protocols elicited similar decreases in blood
lactate concentrations during submaximal exercise, and
in the latter study, CS maximal activity was numerically
greater in the SIT group post-training. The hypothesis
of diminishing returns with increased number of bouts
is supported by acute studies of SIT. Parolin et al.
(1999) demonstrated that AMP and ADP concentrations
were greatest after the first of three Wingate tests, and
glycogenolysis and lactate accumulation were strongly
depressed during the third bout relative to the first bout
of exercise, suggesting that the metabolic signal was not
enhanced with further bouts. Furthermore, the expression
of genes related to mitochondrial biogenesis was similar
for SIT and MICT, whether work was matched (Wang et al.
2009) or not (Psilander et al. 2010).

The potential effects of exercise duration and frequency
on mitochondrial adaptation. Studies performed in
rodents have demonstrated that increasing the training
volume by raising the duration (Fitts et al. 1975; Dudley
et al. 1982) or frequency (Hickson, 1981) of exercise
augments mitochondrial adaptations to aerobic exercise;
however, insufficient data are available to fully ascertain
the roles of these variables in mediating mitochondrial
adaptations to exercise in humans.

The effect of duration seems to depend on the intensity
of the exercise. Green and colleagues (2012, 2013)
examined ‘metabolic strain’ (a proxy for mitochondrial
content) during steady-state exercise following 10 days of
cycling for 30 or 60 min day–1 at a low, moderate, or
high intensity (60, 70 and 86% of V̇O2max, respectively).
Following training at the two higher intensities, but
not the lowest intensity, the accumulation of AMP and
ADP and the depletion of phosphocreatine and glycogen
during steady-state exercise were reduced more following
the 60 min day–1 as compared to the 30 min day–1

programmes, suggesting increases in mitochondrial
content (Holloszy & Coyle, 1984). Thus, the effect of
duration was augmented at higher exercise intensities.
In a relatively large comparison of two 11-week training
programmes consisting of mixed exercise modes and
intensities, the high dose (�3800 kcal week–1) and the
moderate dose (�2000 kcal week–1) groups exhibited
similar increases in markers of mitochondrial content
(Reichkendler et al. 2013; Rosenkilde et al. 2015), which
could be explained by the relatively low average intensity
(�67% of V̇O2max). Note that neither study compared two
durations of interval training.

Limited data are available to ascertain whether weekly
training frequency influences mitochondrial adaptations
in humans. Costill et al. (1991) reported a greater increase
in CS maximal activity for well-trained swimmers who
trained twice each day versus once each day at high

intensities. Similarly, performing SIT twice per week versus
once per week augmented the improvement in lactate
threshold following 6 weeks of training (Dalleck et al.
2010). The increase in CS maximal activity was also similar
(Parra et al. 2000) or blunted (Hatle et al. 2014) when
exercise was performed at a high (7–8 sessions per week)
compared to moderate frequency (2–3 sessions per week);
however, subjects performed the same number of sessions
over different lengths of time across protocols, preventing
conclusions related to the effect of training frequency.

Recently, Granata et al. (2016) reported that
increasing the volume of HIIT (by augmenting duration
and frequency while maintaining intensity) increased
mitochondrial content, providing evidence that increases
in the volume of high-intensity exercise can augment
mitochondrial content; however, the relative importance
of frequency or duration in mediating this adaptation
cannot be determined from this study.

The role of skeletal muscle recruitment pattern and
fibre type. Evidence from rodent studies suggests that
mitochondrial adaptations to exercise occur in a fibre
type-specific manner (Dudley et al. 1982; Taylor et al.
2005); however, the interaction between fibre type and
exercise intensity has received less attention in humans,
as most studies examine adaptations at the whole-muscle
level. Skeletal muscle recruitment occurs in proportion
to exercise intensity (Vøllestad & Blom, 1985; Sale,
1987), implying that higher intensities of exercise could
elicit greater responses in type II fibres relative to lower
intensities of exercise.

In our recent comparison of work-matched HIIT and
MICT (MacInnis et al. 2016), we hypothesized that
changes in mitochondrial content (measured with cyto-
chrome c oxidase subunit IV (COXIV) protein content)
would be greater in type II fibres following HIIT as
compared to MICT. We demonstrated an effect of training
on COXIV in whole muscle, but we were unable to
demonstrate that response in either fibre type. In contrast,
greater increases in SDH maximal activity in type II
fibres have been reported following HIIT relative to
work-matched MICT (Henriksson & Reitman, 1976),
and type II fibre activation and AMPK activity were
greater following an acute session of HIIT relative to a
comparable session of MICT (Kristensen et al. 2015).
In rodent muscle, increases in exercise intensity led to
a plateau in mitochondrial content in red quadriceps
muscle, whereas relatively high intensities of exercise were
necessary to increase the mitochondrial content of white
quadriceps muscle (Dudley et al. 1982; Taylor et al. 2005).
Comparisons of low-volume SIT and MICT demonstrated
similar increases in COX expression (Shepherd et al. 2012)
and SDH activity (Scribbans et al. 2014) across fibre types
despite the differences in training volume and the expected
differences in muscle recruitment between SIT and MICT.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 595.9 Training adaptations and the nature of the stimulus 2925

Thus, data regarding the potential for different training
programmes to induce fibre type-specific mitochondrial
responses to exercise in humans is inconclusive.

Interval training and skeletal muscle capillary density.
Skeletal muscle capillarization requires weeks to months
to manifest in response to exercise training (Andersen
& Henriksson, 1977; Hoppeler et al. 1985), and changes
in capillary density appear to be blunted at higher
exercise intensities (see Gliemann, 2016). Low-volume
SIT induced similar or greater increases in the expression
of several angiogenesis-related mRNAs relative to MICT,
including greater vascular endothelial growth factor
(VEGF) expression; however, the concentration of muscle
interstitial VEGF protein and the proliferation of cultured
endothelial cells were lower following the SIT session
(Hoier et al. 2012). These acute differences corresponded
with the increased and unchanged capillary density
following the 4-week preconditioning period of MICT and
the 4 weeks of SIT, respectively. In the one comparison of
work-matched HIIT and MICT we are aware of, skeletal
muscle capillarization increases were greatest following
MICT (Daussin et al. 2008); however, two separate studies
reported similar increases in capillary density with 6 weeks
of low-volume SIT or MICT (Cocks et al. 2013; Scribbans
et al. 2014). With the limited data, it is difficult to
reconcile the inconsistent results, but in all cases MICT
was more or equally as effective for increasing capillary
density compared to HIIT/SIT. To our knowledge, there
are no human data addressing the role of exercise duration
or training frequency on skeletal muscle capillarization;
however, given the relationship between capillary density
and exercise performance (Coyle et al. 1988; Iaia et al.
2011), this area of research is deserving of more attention.

Cardiovascular adaptations to interval exercise
training

Time course of cardiovascular adaptations to exercise
training in humans. Improvements in V̇O2max typically
manifest as early as 2–4 weeks after initiating training
(Henriksson & Reitman, 1976; Andersen & Henriksson,
1977), but V̇O2max can increase after 1 week (Hickson
et al. 1977). The latter study reported the largest mean
increase in V̇O2max in humans, a 44% increase over
10 weeks in response to a high volume of intense inter-
val and continuous training. In cross-sectional studies,
the variation in V̇O2max is predominately attributable to
variation in maximum stroke volume (and cardiac output)
as opposed to the arteriovenous O2 difference (Bassett
& Howley, 2000; Montero et al. 2015b), and training
studies generally reach the same conclusion (e.g. Ekblom
et al. 1968). The increase in maximum cardiac output
observed after several weeks of endurance training was
related to exercise-induced haematological adaptations,

as phlebotomizing subjects returned cardiac output and
V̇O2max to baseline values (Bonne et al. 2014; Montero
et al. 2015a). Although plasma and blood volumes
increase after relatively few exercise sessions (Convertino
et al. 1980; Green et al. 1987; Graham et al. 2016),
contributing to increased stroke volume and decreased
heart rate during submaximal exercise (Green et al. 1990;
Goodman et al. 2005), changes in maximum stroke
volume and cardiac output seem to require more time to
manifest. Improvements in maximum stroke volume have
been reported after 2–6 weeks of training in some (e.g.
Warburton et al. 2004; Esfandiari et al. 2013; Bonne et al.
2014; Montero et al. 2015a) but not all training protocols
(e.g. Macpherson et al. 2011; Jacobs et al. 2013).

The role of exercise intensity in mediating improvements
in V̇O2max. In a meta-analysis comparing the effects of
interval and continuous training on V̇O2max in healthy
adults, Milanovic et al. (2016) reported a greater response
to interval training relative to continuous training whether
training volume was equal or not. This conclusion is
supported by an analysis from Bell & Wenger (1988),
which demonstrated a linear improvement in V̇O2max as
training intensity increased from 50 to 100% of V̇O2max,
and a meta-analysis from Bacon et al. (2013), which
reported a greater increase in V̇O2max for high-intensity
training relative to values typically reported in large studies
of MICT. Similarly, a meta-analysis by Weston et al.
(2014a) concluded that HIIT was more effective than
work-matched MICT for improving V̇O2max in patients
with lifestyle-induced cardiometabolic disease. Finally,
a recent, large randomized control trial of different
intensities of continuous exercise with obese adults
supports these meta-analyses: greater increases in V̇O2max

were demonstrated in response to 24 weeks of exercise
performed at 75% of V̇O2max relative to isocaloric exercise
performed at 50% of V̇O2max, with differences apparent
after 8 weeks of training (Ross et al. 2015).

The importance of exercise intensity in improving
V̇O2max is further evident from comparisons of MICT and
much lower volumes of SIT/HIIT. Low-volume SIT/HIIT
performed for 2–16 weeks increased V̇O2max (Gist et al.
2013; Sloth et al. 2013; Weston et al. 2014b), with
improvements elicited by the high-intensity protocols
being equal to improvements from MICT protocols when
compared (Gist et al. 2013). In agreement with these
analyses, we recently demonstrated that low-volume SIT
increased V̇O2peak to the same extent as MICT over a
12-week period, despite a fivefold difference in training
volume (Gillen et al. 2016).

Relatively few studies have investigated changes in
V̇O2max in response to different durations or frequencies of
interval training; however, both variables appear to have
relatively small effects on V̇O2max compared to the effect
of exercise intensity. For example, the improvements in
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V̇O2max were not different in subjects who performed either
one or four bouts of 4 min intervals (Tjønna et al. 2013)
or either 2 or 4 days per week of interval training (Fox
et al. 1975). In a series of classic studies for which subjects
trained for 10 weeks and then continued to perform a lower
volume of exercise for 15 weeks, Hickson and colleagues
reported that maintaining intensity (Hickson et al. 1985)
was more important to preserve the training-induced
increase in V̇O2max than maintaining duration (Hickson
et al. 1982) or frequency (Hickson & Rosenkoetter, 1981).

While the effect of interval training duration on V̇O2max

is unclear, two meta-analyses suggested that longer inter-
val bouts increased V̇O2max to a greater extent than
shorter interval bouts (Bacon et al. 2013; Milanović et al.
2016). In contrast, Knuttgen et al. (1973) and Helgerud
et al. (2007) both reported similar increases in V̇O2max

when comparable volumes of high-intensity exercise were
performed as short (15 s) or long (3–4 min) intervals.

The role of exercise intensity in cardiac output and blood
volume responses to training. Despite the compelling
evidence that intensity has a strong influence on the
exercise-induced increase in V̇O2max, relatively few studies
are available to understand the effects of exercise intensity
on maximum stroke volume and cardiac output or
blood volume. In work-matched comparisons, maximum
stroke volume increased more (Helgerud et al. 2007;
Daussin et al. 2008; Bækkerud et al. 2016) or similarly
(Warburton et al. 2004) following HIIT relative to lower
intensities of continuous exercise; however, when assessed,
changes in haematological parameters did not explain the
differences in stroke volume between groups (Helgerud
et al. 2007; Bækkerud et al. 2016). In contrast, the
increase in maximum stroke volume in response to MICT
was greater than or similar to the responses elicited by
low-volume SIT (Macpherson et al. 2011) and low-volume
HIIT (Esfandiari et al. 2013), respectively. It is tempting
to suggest that, similar to the findings for V̇O2max,
high-intensity exercise has a greater effect on central
adaptations than moderate-intensity exercise; however, it
is difficult to draw strong conclusions on the importance of
exercise intensity for eliciting cardiovascular adaptations
based of the limited number of comparisons in healthy
individuals, particularly given the heterogeneity in the
subjects, training programmes and methods of the studies.

Conclusions

The relative importance of the intensity, duration and
frequency of interval training has not been established
for many key physiological adaptations to exercise. For
skeletal muscle mitochondrial adaptations and V̇O2max,
exercise intensity mediates responses to training: relative
to MICT, physiological adaptations to interval training
are seemingly greater when training volumes are equal

or similar when the volume of interval training is
lower. For other physiological variables, the effect of
intensity is unclear, and it is uncertain whether inter-
val training is advantageous compared to MICT. Given
the relative lack of data regarding the influences of
exercise duration and training frequency on physiological
adaptations to exercise, particularly for interval exercise,
more research is needed to understand how these training
variables impact peripheral and central adaptations to
interval exercise. Specifically, we are unable to determine
whether performing longer durations (i.e. a greater
numbers of bouts per session) or greater frequencies
of interval training would have beneficial effects for
any of the variables in question. In summary, interval
training is a powerful stimulus to elicit improvements
in mitochondrial content and V̇O2max; however, we
know relatively little regarding the influences of exercise
intensity, duration, and frequency on other components of
the integrative physiological response to interval training.
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G, Paužas H, Mekideche A, Kayser B, Martinez-Redondo V,
Ruas JL, Bruton J, Truffert A, Lanner JT, Skurvydas A &
Westerblad H (2015). Ryanodine receptor fragmentation
and sarcoplasmic reticulum Ca2+ leak after one session of
high-intensity interval exercise. Proc Natl Acad Sci USA 112,
15492–15497.

Poole DC & Gaesser GA (1985). Response of ventilatory and
lactate thresholds to continuous and interval training. J Appl
Physiol 58, 1115–1121.

Psilander N, Wang L, Jens W, Tonkonogi M & Sahlin K (2010).
Mitochondrial gene expression in elite cyclists: effects of
high-intensity interval exercise. Eur J Appl Physiol 110,
597–606.

Ramos JS, Dalleck LC, Tjønna AE, Beetham KS & Coombes JS
(2015). The impact of high-intensity interval training versus
moderate-intensity continuous training on vascular
function: a systematic review and meta-analysis. Sports Med
45, 679–692.

Reichkendler MH, Rosenkilde M, Auerbach PL, Agerschou J,
Nielsen MB, Kjaer A, Hoejgaard L, Sjödin A, Ploug T &
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