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Exercise heat acclimation induces physiological adapta-
tions that improve thermoregulation, attenuate physi-
ological strain, reduce the risk of serious heat illness, and
improve aerobic performance in warm-hot environments
and potentially in temperate environments. The adapta-
tions include improved sweating, improved skin blood
flow, lowered body temperatures, reduced cardiovascular
strain, improved fluid balance, altered metabolism, and
enhanced cellular protection. The magnitudes of adapta-
tions are determined by the intensity, duration, fre-
quency, and number of heat exposures, as well as the
environmental conditions (i.e., dry or humid heat).

Evidence is emerging that controlled hyperthermia regi-
mens where a target core temperature is maintained,
enable more rapid and complete adaptations relative to
the traditional constant work rate exercise heat acclima-
tion regimens. Furthermore, inducing heat acclimation
outdoors in a natural field setting may provide more spe-
cific adaptations based on direct exposure to the exact
environmental and exercise conditions to be encountered
during competition. This review initially examines the
physiological adaptations associated with heat acclima-
tion induction regimens, and subsequently emphasizes
their application to competitive athletes and sports.

Humans have a remarkable ability to adapt to heat stress
and given adequate water and protection from the sun, a
healthy heat-acclimated individual can tolerate extended
exposure to virtually any natural weather-related heat
stress (Wenger, 1988; Hori, 1995; Sawka et al., 1996).
Heat stress results from the interaction of environmental
conditions (i.e., temperature, humidity, solar radiation),
physical work rate (i.e., metabolic heat production), and
wearing of heavy clothing that impedes heat loss (Sawka
et al., 1996). Environmental heat stress and exercise
interact to increase physiological strain (Nadel, 1977),
which is manifested by high core, skin and brain tem-
peratures, increased cardiovascular strain, a greater reli-
ance on carbohydrate metabolism, and results in reduced
aerobic performance (Rowell, 1974; Febbraio et al.,
1994a,b; Galloway & Maughan, 1997; Périard et al.,
2011b; Nybo et al., 2014). Heat acclimation results in
adaptations that reduce the deleterious effects of heat
stress (Table 1). Typically, adaptation occurs through
morphological, chemical, functional, and genetic adjust-
ments that decrease physiological strain under stress
(Adolph, 1964; Bligh, 1973). During heat acclimation,
adaptations develop following repeated heat exposures
to artificial/laboratory settings that are sufficiently
stressful to elicit profuse sweating and elevate skin
and core temperatures. Similarly, heat acclimatization
designates exposure to natural environments that elicit

analogous responses (Wenger, 1988). Hence, the terms
heat acclimation and heat acclimatization will be used
interchangeably throughout the review.

In 1768, James Lind published the first report on the
ability of humans to adapt to environmental heat (Lind,
1768). He reported that when relocating to East and West
Indian climates, Europeans were at first adversely
affected by the environment, but over a period of time,
habituated and eventually lived comfortably (e.g.,
Fig. 1). This acclimatization phase included behavioral
adaptations that led to reducing workload, rescheduling
work periods, and utilizing shelters. Lind (1768) also
highlighted that there were probably blood adaptations
allowing Europeans to “enjoy a pretty good state of
health” once heat acclimatized. Subsequent studies of
heat acclimation have mostly been directed to military or
occupational tasks (Dresoti, 1935; Horvath & Shelley,
1946; Hellon et al., 1956; Strydom et al., 1966;
Wyndham, 1967; Pandolf et al., 1977), which are per-
formed at relatively low-moderate exercise intensities
(Henschel et al., 1943; Robinson et al., 1943; Weiner,
1950; Lind & Bass, 1963; Shvartz et al., 1973) with
moderately fit subjects (Pandolf et al., 1977; Davies,
1981). Relatively few studies have attempted to modify
and adapt heat acclimation strategies developed for
occupational and military settings to the competitive
athletes (Garrett et al., 2009; Lorenzo et al., 2010;
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Buchheit et al., 2011; Racinais et al., 2014, 2015). Com-
petitive athletes are often highly fit and participate in
events requiring high metabolic intensities. In addition,
most prior heat acclimation protocols were conducted
over many days eliciting a “slow” adaptation, whereas
athletes may rapidly travel from a temperate environ-
ment to a warm-hot one and may need more rapid induc-
tion of heat acclimation to optimize their performance.

This review initially examines the physiological adap-
tations associated with heat acclimation induction regi-
mens, and subsequently emphasizes their application to
competitive athletes and sports. The phenotypic adapta-
tions described in the review relate to characteristics that
are influenced by both an individual’s genotype and the

environment. Processes of physiological accommoda-
tion, which refers to the acute responses that support
homeostatic regulation following heat exposure (Brooks,
1969), as well as habituation (i.e., tolerance), which
relates to phenotypic adaptations that reduce physiologi-
cal strain in well-adapted individuals under stress (Brück
& Zeisberger, 1990) are also highlighted. It is hoped that
this review will provide the scientific foundation to
develop new exercise heat procedures for rapid induction
of heat acclimation in athletes competing in high-
intensity sporting events.

Human temperature regulation

Body core temperature is typically regulated about a
mean value of ∼37 °C, remaining within a narrow func-
tional range (35 to 41 °C). Fluctuations in temperature
occur naturally as a result of sleeping patterns, food
intake, physical work, arousal, environmental condi-
tions, hydration state, exercise, and fever. The regulation
of body temperature is accomplished through two paral-
lel processes: behavioral and physiological temperature
regulation. Behavioral temperature regulation operates
largely through conscious behavioral adjustments and
may employ any means available, including standing in
the shade and wearing light colored clothing. Alterations
in work rate during self-paced exercise in the heat also
constitute behavioral adjustments that contribute to regu-
late body temperature. Physiological or autonomic tem-
perature regulation operates through thermogenic and
theromolytic responses that are independent of con-
scious voluntary behavior. These responses include the
control of metabolic heat production (i.e., shivering),
vasomotor function (i.e., heat flow via blood redistribu-
tion from the core to the skin), and sudomotor function
(i.e., sweating).

Table 1. Physiological adaptations and functional consequences associated with the heat acclimation phenotype that lead to improved thermal comfort and
submaximal aerobic performance, and increased maximal aerobic capacity

Adaptation Consequence Adaptation Consequence

Core temperature Reduced Cardiovascular stability Improved
Rest (temperate) – decreased Heart rate – lowered
Exercise – decreased Stroke volume – increased

Sweating Improved Cardiac output – better sustained
Onset threshold – decreased Blood pressure – better defended
Rate – increased Myocardial compliance – increased
Sensitivity – increased Myocardial efficiency – increased

Skin temperature Reduced Cardioprotection – improved
Skin blood flow Improved Skeletal muscle metabolism Improved

Onset threshold – decreased Muscle glycogen – spared
Sensitivity – increased Lactate threshold – increased
Rate (tropical) – increased Muscle and plasma lactate – lowered

Fluid balance Improved Muscle force production – increased
Thirst – improved Whole-body metabolic rate Lowered
Electrolyte losses – reduced Acquired thermal tolerance Increased
Total body water – increased Heat shock proteins expression – increased
Plasma volume – Increased Cytoprotection – improved

Adapted with permission from Sawka et al. (2000, 2011).

Fig. 1. Adjustment in thermal comfort with acclimatization to a
tropical (hot and humid) climate in resting subjects. Comfort
level is altered in relation to specific humidity (i.e., grams of
water per kilogram of air), dry bulb temperature, and relative
humidity. Adapted with permission from Folk (1974).
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Human temperature regulation is mediated by physi-
ological control systems that produce graded responses
according to disturbances in a regulated variable, in this
case, core temperature. Usually, the magnitude of
change in response (e.g., sweating) is proportional to
displacement of the regulated variable from a given basal
level. Such control systems are called proportional-
control systems. Both peripheral (i.e., skin) and central
(i.e., brain, spinal column, and large vessels) thermal
receptors provide afferent input to thermoregulatory
centers located in the hypothalamus. When integrated in
the thermoregulatory centers, thermal receptor input is
juxtaposed to a reference temperature referred to as the
“set point” (Hammel et al., 1963; Hensel, 1973). The
“set point” is purely a mathematical concept used for
describing the thermal control of effector responses. The
concept does not imply a particular neural model of
thermoregulation or set temperature, but describes dif-
ferent recruitment stages within the magnitude of a load
error, which is the difference between the input and set
point (Gisolfi & Wenger, 1984). Accordingly, thermal
receptors in the core and skin send information to a
central integrator, located in the preoptic anterior hypo-
thalamus (Boulant, 1996). This integrator generates a
thermal command signal that participates in the control
of sweating, skin vasodilation, and vasoconstriction. Of
note, core temperature changes have a greater effect
(∼9-fold) on heat loss responses than skin temperature
changes (Sawka et al., 1996). However, ambient tem-
perature – and thus skin temperature – changes are much
greater than core temperature changes, so the total effect
of skin temperature on thermoregulation should not be
underestimated.

Recently, the notion of a unified central integrator has
been re-examined. Romanovsky (2007) proposed that
body core temperature is regulated by independent
thermoeffector loops, triggered by temperature-
dependent phase transitions in thermosensory neurons,
which are mediated by a particular combination of shell
and core temperatures. Although this concept is interest-
ing and persuasive, the traditional notion of central inte-
gration is supported by data indicating that the ratio of
the contributions from core and skin temperature inputs
to changes in sweating and skin blood flow are the same,
and that the thresholds for sweating and skin vasodila-
tion are simultaneously shifted – to a similar degree – by
factors such as circadian rhythm, fever, phase of the
menstrual cycle, and heat acclimation (Gisolfi &
Wenger, 1984; Stephenson & Kolka, 1988). Hence, the
current review will rely on the traditional model of a
central integrator and “set point.”

Physiological adaptations and mechanisms

Heat acclimation develops through frequent exposure to
hot environmental conditions, which elicit responses
that attenuate the negative effects of heat stress. Heat

acclimation improves thermal comfort (Lemaire, 1960;
Folk, 1974; Gonzalez & Gagge, 1976), submaximal
exercise performance, and increases maximal aerobic
capacity ( !VO2max) in the heat (Lorenzo et al., 2010). The
benefits of heat acclimation are achieved by enhanced
sweating and skin blood flow responses, plasma volume
expansion, better fluid balance and cardiovascular stabil-
ity, a lowered metabolic rate, and acquired thermal tol-
erance (Hori, 1995; Sawka et al., 1996; Horowitz, 2014).
Table 1 provides a summary of the physiological adap-
tations and functional consequences associated with the
heat acclimation phenotype.

Sweating and skin blood flow
Adaptations in sweat rate and sweat composition were
among the first described in response to heat acclimati-
zation. Indeed, by the end of the 1940s, it was widely
accepted that heat acclimatization increases sweat rate
and decreases sweat sodium and chloride concentrations
(Dill et al., 1933, 1938; Adolph & Dill, 1938; Robinson
et al., 1943; Horvath & Shelley, 1946). Along with a shift
in the onset threshold for sweating, which occurs earlier
and at a lower core temperature (Nadel et al., 1974;
Roberts et al., 1977), changes in sweat rate and compo-
sition are considered as the principal adaptive responses
to heat exposure (Eichna et al., 1950; Strydom et al.,
1966; Wyndham et al., 1968; Gonzalez et al., 1974;
Nielsen et al., 1997). These responses are indicative of
both central and peripheral adaptation (Fig. 2). At the
central level, heat acclimation decreases the body tem-
perature at which sweating is initiated. This adjustment
in onset threshold is proposed to correspond to an abso-
lute change in mean body temperature, rather than to the

Fig. 2. Schematic representation of the central and peripheral
adaptations that occur in response (Pre vs Post) to heat acclima-
tion (HA). The body core temperature threshold for the onset of
sweating is reduced, while the rate and sensitivity (i.e., slope) are
increased. Concomitantly, the body core temperature threshold
for the onset of cutaneous vasodilation is reduced, whereas skin
blood flow sensitivity is increased. Adapted with permission
from Nadel et al. (1971) and Gisolfi and Wenger (1984).
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attainment of a predetermined mean body temperature
(Patterson et al., 2004b). Peripheral adaptations, mani-
fested by changes in sweat rate and sensitivity (Allan &
Wilson, 1971), occur at the level of the sweat gland (Fox
et al., 1964; Chen & Elizondo, 1974; Inoue et al., 1999;
Buono et al., 2009a,b). These adaptations include
improved cholinergic sensitivity, and increased size
and efficiency of eccrine glands in producing sweat
per unit length of secretory coil (Sato & Sato, 1983; Sato
et al., 1990). Sweat glands also become resistant to
hidromeiosis so that higher sweat rates can be sustained
(Fox et al., 1963a; Ogawa et al., 1982).

Along with an enhanced sweat rate, sweat composi-
tion changes with heat acclimation. Electrolytes (e.g.,
chloride) are reabsorbed and sodium concentration is
reduced, resulting in a more dilute sweat (Dill et al.,
1938; Allan & Wilson, 1971; Ogawa et al., 1982;
Chinevere et al., 2008). For example, an unacclimatized
person may secrete sweat with a sodium concentration of
60 mEq/L or higher and, if sweating profusely, can lose
large amounts of sodium. With acclimation, the sweat
glands conserve sodium by secreting sweat with a
sodium concentration as low as 10 mEq/L. The preser-
vation of sodium appears to stem from an increased
sodium conservation within the reabsorptive duct of the
sweat gland (Sato & Dobson, 1970; Sato et al., 1971),
which is dependent on sodium depletion, as well as
aldosterone, a hormone secreted in response to exercise
and heat stress that facilitates the reabsorption of
sodium. Of note, heat dissipation via sweat evaporation
is enhanced for a given sweat rate because of the change
in sweat composition, as electrolytes lower the water
vapor pressure at the level of the skin for a given tem-
perature (Taylor, 2014). Consequently, a more dilute
sweat is more easily evaporated because of a widening of
the water vapor gradient between the skin and ambient
air.

Exercising in the heat represents a circulatory chal-
lenge for both unacclimated and acclimated athletes.
However, earlier and greater sweating during acclima-
tion improves evaporative cooling, assuming the climate
allows evaporation, and reduces skin temperature and
thus skin blood flow requirements. Lower skin tempera-
ture may also reduce cutaneous venous compliance so
that blood volume is redistributed from the peripheral to
the central circulation (Eichna et al., 1950; Rowell et al.,
1967). Until recently, it was postulated that heat accli-
mation centrally modifies thermoregulatory responses in
the skin by reducing the core temperature threshold for
vasodilation, without altering the slope of the blood
flow–core temperature relationship (i.e., sensitivity; Fox
et al., 1963b; Roberts et al., 1977; Yamazaki &
Hamasaki, 2003). However, by locally infusing an
endothelium-dependent vasodilator (acetylcholine) via
microdialysis, Lorenzo and Minson (2010) showed that
acclimation does improve local cutaneous vascular
responses (Fig. 2). The authors suggested that this

peripheral response may be derived from adaptations
associated with an increase in the number and sensitivity
of muscarinic receptors, a decrease in cholinesterase
activity leading to an improved vascular response to
acetylcholine, or alterations to the pathway of vasodila-
tion within smooth muscles or the endothelial cells.
Thus, given that heat acclimation does not alter maximal
skin blood flow, the modified cutaneous vascular
response appears to stem from improvements in vascular
function (i.e., increased sensitivity of the skin microvas-
culature to vasodilate), rather than structural changes
that limit maximal vasodilator capacity (Lorenzo &
Minson, 2010).

Blood volume and fluid balance
Most studies report that heat acclimation increases total
body water by 2–3 L, or ∼5–7% (Bass et al., 1955;
Wyndham et al., 1968; Patterson et al., 2004a, 2014).
This increase is well within the measurement resolution
for total body water and thus appears to be a real physi-
ological phenomenon. While it may be argued that such
an increase in total body water may be detrimental to
performance in certain sports because of the increase in
body mass, the benefits (e.g., improved thermoregulation
and cardiovascular stability) stemming from this
increase outweigh its potential deleterious effects, espe-
cially in endurance sports. The division of the total body
water increase between intracellular fluid (ICF) and
extracellular fluid (ECF: plasma and interstitial fluid) is
variable, as studies have reported that ECF accounts for
greater, equal, and smaller than its percentage increase in
total body water after heat acclimation (Sawka & Coyle,
1999). Measures of ECF have relatively high variability,
and therefore, trends for such small changes are difficult
to interpret. The extent to which ICF increases is unclear
because it is typically calculated as the difference
between total body water and ECF, and thus, measure-
ment variability inherent in both these techniques is
compounded in the calculation of ICF. The increase in
total body water can be explained in part by the
increased secretion of fluid conserving hormones aldo-
sterone and arginine vasopressin, and/or renal sensitivity
to a given plasma concentration. The conservation of
sodium also helps to maintain the number of osmoles in
the extracellular fluid, and thus, to maintain or increase
ECF volume during adaptation to repeated heat exposure
(Nose et al., 1988). Correspondingly, if total body water
and ECF increase after heat acclimation, then expansion
of plasma volume might be expected.

Adjustments in blood volume in response to climatic
changes were first reported by Barcroft et al. (1922).
Thereafter, Bazett et al. (1940) published a comprehen-
sive description of the hematological adaptations asso-
ciated with heat exposure, indicating that changes
in plasma volume develop quite rapidly, causing a tem-
porary decrease in haemoglobin concentration and
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hematocrit, and occasionally in plasma protein concen-
tration. Plasma volume expansion is usually present after
3 to 4 days of repeated heat exposure (Sawka & Coyle,
1999), but is also influenced by seasonal changes.
A ∼5% expansion in resting plasma volume occurs in the
hottest months and a ∼3% contraction in the coldest
months (Doupe et al., 1957; Sawka & Coyle, 1999). This
occurs with considerable variability with some individu-
als not experiencing an expansion in plasma volume.
During acute heat acclimation, plasma volume expan-
sion is generally 4–15%, but can range from 3% to 27%
(Bass et al., 1955; Senay et al., 1976; Nielsen et al.,
1993; Patterson et al., 2004a, 2014), while erythrocyte
volume remains unaltered by heat acclimation or season
(Sawka & Young, 2000). The magnitude of increase in
plasma volume is dependent on the heat acclimation day,
the hydration state when measured, skin temperature and
whether the individual is at rest or performing exercise
(Sawka et al., 1983b; Harrison, 1985; Kenefick et al.,
2014). It may also relate to fitness level, with endurance-
trained athletes already exhibiting an expanded plasma
volume. Notwithstanding, plasma volume expansion
seems to be greatest during upright exercise on about the
fifth day of heat acclimation in fully hydrated individu-
als. Conversely, during water-based sports (e.g., long
distance swimming), the hydrostatic pressure conferred
by the water and the prone position adopted during exer-
cise may act to minimize the decreases in renal blood
flow and central venous pressure, resulting in reduced
fluid regulation and plasma volume expansion (Harrison,
1985; Convertino, 1991). Ultimately, plasma volume
expansion has two obvious physiological advantages: (a)
increasing vascular filling to support cardiovascular sta-
bility; and (b) increasing the specific heat of blood to
slightly lower skin blood flow responses (Sawka et al.,
2011).

Although the rapid increase in plasma volume expan-
sion was previously described as being a transient phe-
nomenon (Wyndham et al., 1968; Senay, 1979; Shapiro
et al., 1981), it appears that this may have been an
experimental artifact related to the traditional constant
work rate model of heat acclimation. Recent findings
suggest that by using the controlled hyperthermia tech-
nique, which maintains a constant adaptation stimulus
by clamping core temperature (e.g., 38.5 °C) throughout
acclimation, plasma volume remains similarly expanded
(∼14%) after 8 and 22 days of heat exposure (Patterson
et al., 2004a, 2014). The mechanism(s) responsible for
this hypervolemia are unclear, but may include an
increase in ECF mediated by retention of crystalloids,
primarily sodium chloride, and perhaps an increase in
plasma volume modulated by the oncotic effect of intra-
vascular protein (Mack & Nadel, 1996; Patterson et al.,
2004a, 2014).

A reduction in total body water (i.e., dehydration) will
adversely affect thermoregulation and increase cardio-
vascular strain (Morimoto, 1990; Sawka & Coyle, 1999),

which can counteract the benefits conferred by heat
acclimation and high aerobic fitness (Buskirk et al.,
1958; Sawka et al., 1983b). Dehydration increases core
temperature during exercise in temperate and hot envi-
ronments, and the greater the water deficit, the greater
the elevation in core temperature. Dehydration also
impairs dry and evaporative heat loss via the develop-
ment of plasma hyperosmolality and hypovolemia
(Sawka & Coyle, 1999). However, recent evidence sug-
gests that heat acclimation might attenuate the adverse
effects of hyperosmolality on impairing sweating and
skin blood flow responses (Takamata et al., 2001). As
such, total body water expansion stemming from heat
acclimation may confer a protective benefit against
dehydration. Moreover, moderate permissive dehydra-
tion during exercise heat acclimation may facilitate
adaptation (Taylor & Cotter, 2006) by increasing fluid-
electrolyte retention, plasma volume expansion, and car-
diovascular responses to heat stress, particularly during
short-term heat acclimation (Garrett et al., 2011, 2014).
Thus, although dehydration has clear detrimental effects
on performance, heat acclimation regimens that allow
for permissive dehydration may contribute to accelerate
the acclimation process.

Fluid balance improvements from heat acclimation
include better matching of thirst to body water needs,
reduced sweat sodium losses, increased total body water,
and increased blood volume (Mack & Nadel, 1996;
Sawka & Coyle, 1999). Thirst is often not a good index
of body water requirements as ad libitum water intake
can result in incomplete fluid replacement or voluntary
dehydration during exercise heat stress (Adolph & Dill,
1938; Bean & Eichna, 1943; Eichna et al., 1945;
Adolph, 1947; Greenleaf & Sargeant, 1965; Greenleaf
et al., 1983; Armstrong et al., 1985; Greenleaf, 1992).
Heat acclimation improves the relationship of thirst to
body water needs so that voluntary dehydration is mark-
edly reduced (∼30%; Bean & Eichna, 1943; Eichna
et al., 1945, 1950). Consequently, heat-acclimated indi-
viduals are better able to maintain hydration during exer-
cise in the heat, and thus minimize body water deficits
and voluntary dehydration, provided that access to fluids
is not restricted (Fig. 3). This is an important adaptation
as heat acclimation increases sweating rate and if fluid
replacement is not proportionately increased, greater
dehydration will occur, especially in humid environ-
ments. Along with the expansion of plasma volume
induced during heat acclimation, the ability to better
maintain fluid balance through thirst represents an adap-
tive response that contributes to reduce cardiovascular
strain during subsequent heat stress.

Cardiovascular stability
Improved cardiovascular stability can be best illustrated
by a reduced likelihood of syncope during repeated days
of exercise heat exposure. Figure 4 provides redrawn
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data from Bean and Eichna (1943). On the first day of
exercise in the heat, heart rate is much higher than in
temperate conditions, and stroke volume is lower; there-
after, heart rate begins to decrease when exercising at a
given work rate. These changes are rapid at first, but
continue more slowly for about a week. Various mecha-
nisms participate in reducing cardiovascular strain and
their relative contributions vary over the course of heat
acclimation and also among individuals (Wenger, 1988;
Sawka et al., 1996). These mechanisms include (a)
improved skin cooling and redistribution of blood
volume; (b) plasma volume expansion; (c) increased
venous tone from cutaneous and noncutaneous vascular
beds; and (d) reduced skin and core temperature. It has
also been suggested that a decrease in sympathetic
nervous activity (i.e., plasma norepinephrine concentra-
tion) may contribute to reduce heart rate during heat
acclimation (Berlyne et al., 1974; Hodge et al., 2013),
while in rats, myocardial adaptations could increase

compliance and changes in the distribution of myosin
isoenzymes, reducing myocardial energy cost (Horowitz
et al., 1986).

The effects of heat acclimation on stroke volume and
cardiac output during exercise heat stress include
responses dependent upon the exercise intensity and heat
stress type. Two studies reported increases in stroke
volume with little change in cardiac output as heart rate
decreased with acclimation (Rowell et al., 1967;
Wyndham et al., 1968). Another study reported a
decrease in cardiac output, associated with a reduction in
“surface blood flow,” but little change in stroke volume
as heart rate decreased (Wyndham, 1951). Still, another
study reported a mixed pattern, with two subjects
showing a steady increase in stroke volume, one a tran-
sient increase reversing after the sixth day, and one
showing no increase with heat acclimation (Wyndham
et al., 1976). The reason for these differences is unclear,
although one possibility might be that Rowell et al.
(1967) described dry heat acclimation, while Wyndham
(1951) and Wyndham et al. (1968, 1976) described
humid heat acclimation. Nielsen et al. (1993, 1997)
examined stroke volume responses during exercise
before and after heat acclimation. One study acclimated
subjects for 9–12 days in hot-dry (40 °C, 10% relative
humidity; RH) conditions while cycling at 50% !VO2max

(Nielsen et al., 1993). They reported that during exer-
cise, heat acclimation increased stroke volume (∼21 mL/
beat) and cardiac output (∼1.8 L/min). In the other study,
subjects acclimated for 8–13 days in hot-humid (35 °C,
87% RH) conditions while cycling at 45% !VO2max

(Nielsen et al., 1997). Heat acclimation in these condi-
tions did not alter stroke volume or cardiac output.
Notably, both studies reported a plasma volume expan-
sion of 9–13%.

It has also been shown that 10 days of heat acclimation
improves maximal stroke volume and cardiac output
during a !VO2max test in cool (13 °C), but not hot (38 °C)
conditions, without influencing maximum heart rate
(Lorenzo et al., 2010). Furthermore, short-term (5 days)
moderate-intensity (70% !VO2max, 30 min/day) exercise
heat acclimation has been shown to increase plasma
volume and stroke volume, and decrease heart rate (Goto
et al., 2010). Ultimately, these observations indicate that
heat acclimation improves central hemodynamics, but
that the magnitude of improvement may depend on the
environmental condition (i.e., dry vs humid heat), accli-
mation regimen (i.e., stimulus impulse), exercise inten-
sity, and subject population.

Whole-body and skeletal muscle metabolism
Heat acclimation has been shown to alter whole-body
(Sawka et al., 1996) and skeletal muscle metabolism
(Young et al., 1985; Febbraio et al., 1994a). Consistent
with this is the frequent but not universal observation
that basal metabolic rate is decreased during warmer

Fig. 3. Difference between ad libitum water intake and water
loss in 15 men during work in humid heat over a 6-day period,
compared with work in a cool environment (Eichna et al., 1945).
Reproduced with permission from Sawka et al. (1984).

Fig. 4. Incidence of syncope in 45 men walking with a 9 kg load
for 20 km in 49 °C and 20% relative humidity. Redrawn with
permission from Bean and Eichna (1943).
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months (Hori, 1995). The oxygen uptake response to
submaximal exercise is also reduced by heat acclimation
(Sawka et al., 1983a), as is muscle glycogen utilization
(40–50%; King et al., 1985; Kirwan et al., 1987).
However, the glycogen-sparing effect of heat acclima-
tion has also been shown to be quite small and apparent
only during exercise in cool conditions (Young et al.,
1985). A further effect of heat acclimation is the reduc-
tion of blood and muscle lactate accumulation during
submaximal exercise (Febbraio et al., 1994a) and the
increase in power output at lactate threshold (Lorenzo
et al., 2010). The mechanism(s) mediating these adapta-
tions remains unclear, but could stem from the increase
in total body water enhancing lactate removal through
increased splanchnic circulation (Rowell et al., 1968), or
through increased cardiac output and decreased meta-
bolic rate, delaying lactate accumulation (Sawka et al.,
1983a; Young et al., 1985).

Thermal tolerance
Thermal tolerance refers to cellular adaptations from a
severe nonlethal heat exposure that allows the organism
to survive a subsequent and otherwise lethal heat expo-
sure (Moseley, 1997; Horowitz, 1998). It has been sug-
gested that thermal tolerance and heat acclimation share
a common basis, as both may potentially be governed by
the heat shock response (Kuennen et al., 2011). As such,
thermal tolerance and heat acclimation are complimen-
tary, as acclimation reduces heat strain and tolerance
increases survivability to a given heat strain. For
example, rodents with fully developed thermal tolerance
can survive 60% more heat strain than what would have
been initially lethal (Maloyan et al., 1999). Thermal tol-
erance is associated with heat shock proteins (Hsp)
binding to denatured or nascent cellular polypeptides
and providing protection and accelerating repair from
heat stress, as well as fever, hypoxia, ischemia, viral
infection, energy depletion, and acidosis (Kregel, 2002).

Hsp are grouped into families based upon their
molecular mass (8 to 110 kDa), with Hsp72 being par-
ticularly responsive to heat stress and exercise (Locke,
1997). Hsp families have different cellular locations and
functions. At the intracellular (iHsp) level, Hsp process
stress-denatured proteins, manage protein fragments,
maintain structural proteins, and chaperone other pro-
teins across cell membranes. In the extracellular (eHsp)
milieu, it is purported that Hsp act as a signal, triggering
an immuno-stimulatory response (Pockley, 2003; Asea,
2007; Noble et al., 2008). The export of Hsp outside the
cell occurs via translocation across the plasma mem-
brane, release via lipid vesicles and through passive
release following necrosis (De Maio & Vazquez, 2013).

Hsp expression increases during and following expo-
sure to heat stress with differing responses across various
tissues (e.g., brain and liver exhibit a greater response
than skeletal muscle). After the initial exposure, mRNA

levels peak within an hour and subsequent Hsp synthesis
depends upon both the severity and cumulative heat
stress (Maloyan et al., 1999). Passive heat exposure and
physical exercise both elicit Hsp synthesis (Febbraio &
Koukoulas, 2000); however, the combination of exercise
and heat exposure elicits a greater Hsp response than
either stressor independently (Skidmore et al., 1995).
During exercise in the heat, the expression of eHsp has
been shown to be both duration and intensity dependent,
relating to the level of hyperthermia attained and rate of
rise in core temperature (Périard et al., 2012b).

Horowitz and Robinson (2007) noted that heat accli-
mation increases Hsp70 reserves and accelerates the heat
shock response in animals. In addition, Hsp expression
with heat acclimation has been associated with increased
physical performance and aerobic power in military
working dogs (Bruchim et al., 2014). In humans, the heat
shock response during acclimation and the concomitant
expression of iHsp and eHsp remain somewhat unclear.
For example, it has been shown that 2 days of exercise
heat exposure reduces basal levels of eHsp72 and that an
increase occurs immediately post-exercise (Marshall
et al., 2006). It has also been shown that iHsp72 is unaf-
fected over the same time course, although a slight non-
significant increase in both basal and post-exercise
expression was observed (Marshall et al., 2007). Yamada
et al. (2007) demonstrated that when acclimation was
extended to 10 days, basal iHsp72 expression increased
within 6 days, which blunted the post-exercise induction
response. In contrast, eHsp72 remained unchanged.
During a 15-day heat acclimation regimen, basal eHsp72
was shown to progressively increase and post-exercise
expression decrease in a 29-year-old male ultra mara-
thon runner preparing for the Marathon des Sables, sug-
gesting that a longer heat acclimation period may induce
greater cellular adaptations (Sandstrom et al., 2008).
McClung et al. (2008) conducted a further study in
which iHsp72 and iHsp90 responses to 10 days of exer-
cise heat acclimation were correlated with physiological
adaptations. The authors noted that acclimation
increased basal levels of both proteins and that individu-
als demonstrating the greatest physiological adaptations
exhibited a reduced post-exercise expression (measured
ex vivo via water bath incubation). More recently, an
11-day controlled hyperthermia (1 °C core temperature
elevation) acclimation regimen resulted in an increase in
basal iHsp72 levels, while eHsp72 expression remained
unchanged (Magalhaes et al., 2010). As with the previ-
ous study, the expression following exercise heat expo-
sure was blunted in both iHsp72 and eHsp72. Thus, it
appears that iHsp may be more sensitive to heat stress
than eHsp and that an increase in basal level during
acclimation results in a blunting of the acute response to
exercise as acclimation develops. Moreover, Hsp expres-
sion may depend on the heat acclimation technique uti-
lized, the level of heat strain attained, as well as
sustained. This is consistent with observations that 11
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days of moderate exercise (50% !VO2max) and mild heat
exposure (33 °C and 40% RH) for 90 min induced adap-
tations associated the heat acclimation phenotype,
without inducing significant iHsp70 responses (Hom
et al., 2012).

Moreover, it seems likely that other cellular systems,
besides Hsp, contribute to improved thermal tolerance
and heat acclimation. Research has identified ∼130
genes that are up-regulated and ∼89 genes down-
regulated during heat stress (Sonna et al., 2001). By
comparing the transcript profiles of passive heat expo-
sure and aerobic training with that of exercise heat accli-
mation, Kodesh et al. (2011) were able to describe the
influence of each individual stressor on the reprogram-
ming of gene expression in the development of the exer-
cise heat acclimation phenotype. The authors showed
that genes affected by chronic heat exposure were asso-
ciated with the excitation-contraction coupling cascade,
whereas aerobic training up-regulated genes involved
with calcium turnover. As such, it was purported that the
interaction between heat exposure and exercise is not
merely additive, but should be viewed as an independent
stress, which leads to a specific transcriptional program
(Kodesh et al., 2011). For a thorough review on the role
of heat acclimation on cytoprotection and epigenetics,
the reader is referred to a review by Horowitz (2014).

Performance in hot environments
The effect of heat acclimation on submaximal exercise
performance can be quite dramatic, such that acclimated
individuals can easily complete tasks in the heat that
earlier were difficult or impossible. Pandolf and Young
(1992) reported that of 24 subjects, none were able to
complete a 100-min walk in 49 °C and 20% RH on the
first day of exposure. However, 40% were successful by
day 3, 80% by day 5, and all but one were successful by
the seventh acclimation day. Racinais et al. (2015) also
showed that cycling time trials (43 km) undertaken in
hot outdoor (i.e., field setting) conditions (∼37 °C) were
initiated at a similar power output to that of a time trial
conducted in cold conditions (∼8 °C). Subsequently,
however, a marked decrease in power output occurred in
the heat, which was partly recovered after 1 week of heat
acclimatization and almost fully restored after 2 weeks.
Accordingly, heat acclimation/acclimatization mediates
improved submaximal exercise performance by reducing
physiological strain and abating a variety of other poten-
tial fatigue mechanisms (Nybo et al., 2014).

Interestingly, relative to values recorded in temperate
conditions, heat stress mediates a reduction in !VO2max in
trained individuals that cannot be abated by heat accli-
mation. Indeed, Sawka et al. (1985) demonstrated that
heat acclimation improved !VO2max by 3.5% in moderate
(21 °C) conditions and by 4.2% in the heat (49 °C).
However, the improvement noted in the hot environment
could not compensate for the ∼8% reduction in !VO2max

conferred by heat stress both before and after acclima-
tion, when compared with moderate conditions.
Recently, Lorenzo et al. (2010) observed improvements
of 8% and 5% in the !VO2max of trained individuals in hot
(38 °C) and cool (13 °C) conditions, respectively, fol-
lowing a traditional 10-day heat acclimation regimen
(40 °C for 100 min at ∼50% !VO2max). As with previous
observations, the larger improvement in !VO2max noted in
the hot condition after acclimation failed to compensate
for the ∼20% reduction conferred by heat stress, both
before and after acclimation. Notwithstanding, the
authors also observed increases in cycling time trial per-
formance of 8% (hot) and 6% (cool) (Lorenzo et al.,
2010). The improvements in self-paced exercise perfor-
mance were proportional to the increase in !VO2max in
each condition, which reinforces the notion that relative
exercise intensity strongly influences performance in the
heat (Périard et al., 2011b; Périard, 2013). More specifi-
cally, these improvements in aerobic performance were
associated with increases in maximal cardiac output and
lactate threshold, plasma volume expansion, lower skin
temperatures, and a larger core-to-skin gradient after
heat acclimation. In contrast, no differences were
observed for the control group (Lorenzo et al., 2010).

Following two studies from Nielsen et al. (1993,
1997) in which subjects heat acclimated by exercising to
exhaustion in hot-dry and hot-humid conditions, it was
proposed that heat acclimation does not alter the
maximal core temperature an individual can tolerate
during exercise in the heat. This was proposed because
exhaustion coincided with a core temperature of
∼39.8 °C on each day of acclimation, despite exercise
duration increasing throughout the acclimation period
(Nielsen et al., 1993; Nielsen et al., 1997). Interestingly,
exhaustion occurred at relatively low heart rates both
prior to (∼158 beats/min) and after (∼150 beats/min)
acclimation. Moreover, no reductions in cardiac output
and muscle blood flow were observed at exhaustion, or
changes in substrate utilization and blood lactate accu-
mulation (Nielsen et al., 1993). This led the authors to
suggest that exercise may have been terminated prema-
turely because of a reduction in motivation. Accordingly,
several studies have shown that motivated individuals
reach exhaustion at a heart rate above 95% of maximum
during constant rate exercise to exhaustion and that dec-
rements in cardiac output occur (Rowell et al., 1966;
Gonzalez-Alonso et al., 1999; Périard et al., 2011a,
2012a).

Moreover, there is evidence that individuals living
and training over many weeks in the heat might tolerate
higher maximal core temperatures than those heat
acclimated over 1 or 2 weeks (Sawka et al., 2001),
and that trained individuals can tolerate higher core
temperatures (Pugh et al., 1967; Cheung & McLellan,
1998; Gonzalez-Alonso et al., 1999; Mora-Rodriguez
et al., 2010; Périard et al., 2012a). For example,
Robinson (1963) showed that highly trained and likely
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acclimatized runners can reach core temperatures of
41.1 °C during a 3-mile run (14:15 min) in 30.6 °C con-
ditions. It has also been shown that trained runners per-
forming an 8-km running time trial in warm conditions
(27 °C wet-bulb-globe temperature; WBGT) are able to
sustain running velocity, despite a core temperature
exceeding 40 °C (Ely et al., 2009). More recently, it was
shown that trained cyclists reach core temperatures of
40.1–40.2 °C at the end of a 43.3-km time trial in hot
(37 °C) conditions (Racinais et al., 2015). Therefore, it
does appear that aerobic fitness confers an increased
capacity to tolerate higher core temperatures. However,
whether heat acclimation provides a similar benefit
remains to be determined.

Performance in cool environment
The observation of enhanced aerobic performance in
cool conditions by Lorenzo et al. (2010) supports previ-
ous findings that heat acclimation improves !VO2max in
untrained (13%) and unfit (23%) individuals in cool con-
ditions (Shvartz et al., 1977). It also reinforces the 32%
increase in run time to exhaustion noted in fit individuals
by Scoon et al. (2007) after acclimation via post-exercise
sauna bathing, and the observation that swimmers train-
ing in a tropical climate (30 °C, 80% RH) in 30 °C water
had greater improvements (10%) in performance when
returning to a temperate environment (27.1 °C pool
water) than swimmers who kept training in a temperate
environment (Hue et al., 2007). Other studies have also
observed that team-sport athletes participating in pre-
season (Racinais et al., 2014), in-season (Buchheit et al.,
2011), and off-season (heat and altitude; Buchheit et al.,
2013) training camps in the heat (∼34 °C) improve per-
formance by 7% and 44% (Yo-Yo Intermittent Recovery
test level 1 and 2, respectively) in temperate conditions
(∼22 °C). The mechanisms modulating the transfer
between hot and cool conditions could be linked to a
variety of ergogenic responses, with cardiovascular/
thermoregulatory (Lorenzo et al., 2010) and cellular
(Bruchim et al., 2014) adaptations. As recently high-
lighted by Corbett et al. (2014), heat acclimation may
provide a stimulus for improving performance in
nonthermally challenging environments via improve-
ments in !VO2max, lactate threshold, and economy. Inter-
estingly, it has also been suggested that heat acclimation
may serve to preserve or enhance performance at altitude
(White et al., 2014). The purported pathways for such a
response include plasma volume expansion, improved
cardiac efficiency, and involve the up-regulation of
hypoxia-inducible factor-1 in boosting oxygen delivery.
Currently, however, additional research with well-
designed protocols (e.g., sufficient participants and
control groups) is required to elucidate the mechanisms
associated with improvements in performance at altitude
and in cool conditions, as well as fully substantiate the

ergogenic benefits of heat acclimation on performance in
these environments.

Time course of adaptation
Induction
Heat acclimation is a relatively rapid process that begins
on the first day of exposure (Fig. 5). In fact, 75–80% of
the adaptations occur in the first 4–7 days (Pandolf,
1998; Shapiro et al., 1998). The development of these
adaptations can be divided in three broad periods
(Taylor, 2014), namely, physiological accommodation,
short-term, and long-term adaptation (Sundstroem,
1927; Candas, 1987). The timeline can further be cat-
egorized as short-term acclimation (< 7 days), medium-
term acclimation (8–14 days), and long-term acclimation
(> 15 days; Garrett et al., 2011). The exercise heat accli-
mation phenotype is generally achieved through one of
three induction pathways: (a) constant work rate exercise
(Robinson et al., 1943; Nadel et al., 1974; Nielsen et al.,
1993, 1997); (b) self-paced exercise (Nelms & Turk,
1972; Armstrong et al., 1986); and (c) controlled hyper-
thermia, or isothermic heat acclimation (Fox et al., 1967;
Regan et al., 1996; Patterson et al., 2004a; Garrett et al.,
2009). Although exercise in the heat is the most effective
method for developing heat acclimation, passive heat
exposure also results in some adaptation (Takamata
et al., 2001; Beaudin et al., 2009; Brazaitis & Skurvydas,
2010). However, the specificity of exercise environmen-
tal adaptation lies with the stimulus representing the
conditions in which the athlete will eventually perform.
Thus, to achieve optimal adaptation, work rate and envi-
ronmental conditions should closely replicate those of
the competition setting.

The foundation of our understanding regarding the
induction of heat acclimation stems from studies
conducted in the early to mid-20th century (Dresoti,
1935; Dill et al., 1938; Bean & Eichna, 1943; Robinson
et al., 1943; Eichna et al., 1945, 1950; Ladell, 1951;
Wyndham, 1951; Buskirk et al., 1958). These studies
demonstrated that during the initial heat exposure, physi-
ological strain is high, as manifested by elevated core
temperature and heart rate. However, the physiological
strain induced by heat stress progressively decreases each
day of acclimation. Through daily exercise in a hot
climate (dry or humid), most of the improvements in heart
rate, skin and core temperature, and sweat rate are
achieved during the first week of exposure. The heart rate
reduction develops most rapidly in 4–5 days.After 7 days,
the reduction in heart rate is virtually complete. Most of
the improvements in skin and core temperature have also
occurred by 7 days. The thermoregulatory benefits of heat
acclimation are generally thought to be complete after
10–14 days of exposure; however, improvements in
physiological tolerance may take longer.

Following on from these initial investigations, it was
suggested that continuous daily exposure to dry heat for
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100 min produced optimal heat acclimation responses
(Lind & Bass, 1963). Interestingly, while studies inves-
tigating heat acclimation have generally used daily heat
exposure, Fein et al. (1975) examined the time course of
physiological adaptations to 10 days of heat exposure,
with subjects exposed to heat daily, or every third day.
Using this paradigm, one group completed the acclima-
tion regimen in 10 days and the other in 27 days. Both
regimens were equally effective in inducing heat accli-
mation, but with daily heat exposure, it took approxi-
mately one-third of the total time. More recently, it was
shown with a similar regimen that minimal adaptation
occurs with intermittent heat exposure relative to daily
exposure, which was clearly a more effective strategy for
inducing heat acclimation (Gill & Sleivert, 2001).
Although some adaptations occur when intermittently
exposed to heat (72-h intervals), it appears that 1-week
intervals do not induce heat acclimation (Barnett &
Maughan, 1993). Notwithstanding, intermittent heat
exposures may be beneficial in a high-performance
context when fatigue and dehydration should be avoided
(e.g., taper period; Chalmers et al., 2014). Correspond-
ingly, in highly training athletes, heat acclimation ses-
sions should be viewed and utilized as specific
interventions, separate from those of daily training. Con-
versely, a heat acclimation regimen may supplement
regular training in less fit individuals.

Most recently, considerable focus has been placed on
short-term heat acclimation in benefiting highly trained
endurance and team-sport athletes (Garrett et al., 2009,
2011; Chalmers et al., 2014). While it is expected that
cardiovascular adaptations develop over this time course

(5–7 days), it does not provide a strong-enough stimulus
for sudomotor adaptation (Cotter et al., 1997). Neverthe-
less, the expansion of plasma volume, along with the
emergence of thermoregulatory and metabolic adapta-
tions, improves the perception of effort and fatigue.
Hence, short-term heat acclimation appears to be suffi-
cient at inducing performance-enhancing adaptations,
which may be more pronounced after fluid regulatory
strain from a permissive dehydration acclimation
regimen (Taylor & Cotter, 2006; Garrett et al., 2011,
2014). Although short-term acclimation regimens do not
induce adaptations as complete as long-term acclima-
tion, these regimens may be particularly beneficial as a
preseason training camp, for tapering before competi-
tion, and as a mid-season performance-enhancing tool.

Magnitude
The magnitude of physiological adaptations induced by
heat acclimation depends largely on the intensity, dura-
tion, frequency, and number of heat exposures (Sawka
et al., 1996). For example, it has been shown that low-
intensity long-duration (60 min at 50% !VO2max) exercise
elicits similar heat acclimation benefits (i.e., reduced
exercising heart rate, core temperature, and metabolism)
to that of moderate-intensity short-duration (30–35 min
75% !VO2max) exercise (Houmard et al., 1990). It has also
been shown that certain adaptations (i.e., shorter sweat-
ing latency and lower core temperature threshold for
sweating) are more pronounced during the specific daily
time period in which previous heat exposure has
occurred (Shido et al., 1999).

Fig. 5. Time course of induction in human adaptations to heat stress. Within this first week of exercise heat acclimation, plasma
volume expands and heart rate decreases during exercise at a given work rate. Perceptually, the rating of thermal comfort improves.
From a thermoregulatory perspective, core and skin temperature are reduced during exercise at a given work rate, whereas sweat rate
increases. Consequently, aerobic exercise capacity is increased. Of note, the magnitude of these adaptations is dependent on the initial
level of acclimation, the environmental conditions (i.e., dry or humid), exercise intensity, and acclimation regimen.
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The magnitude of adaptation may also relate to the
induction pathway. Taylor (2000, 2014) has highlighted
that repeated exposure to a constant work rate regimen
(i.e., traditional heat acclimation) results in physiologi-
cal habituation, whereas the progressive overload
approach (e.g., controlled hyperthermia to a core tem-
perature of 38.5 °C) induces more complete adaptation.
In effect, the traditional heat acclimation model offers a
constant forcing function (i.e., fixed endogenous and
exogenous thermal loads), the influence of which pro-
gressively decreases as adaptations develop (Eichna
et al., 1950; Fox et al., 1963a; Rowell et al., 1967). In
contrast, the adaptation impulse is maintained during
controlled hyperthermia as the individual adapts because
the forcing function (i.e., metabolic heat production) is
increased through the manipulation of endogenous
and/or exogenous thermal loads (Taylor, 2000).

Alternatively, we propose that utilizing a controlled
intensity regimen, whereby a given level of cardiovascu-
lar strain is maintained during daily exercise heat expo-
sure, may also elicit a sustained forcing function. This
strain level might be achieved by identifying the heart
rate associated with a specific relative intensity (e.g., a
percentage of !VO2maxor lactate threshold) in cool condi-
tions, and adjusting work rate accordingly during exer-
cise in the heat to sustain this heart rate throughout the
acclimation period. As with the controlled hyperthermia
regimen, absolute work rate would increase after the
initial accommodation phase. This approach appears
practical given that Garrett et al. (2012) showed the
maintenance of a mean heart rate around 121 beats/min
throughout a short-term controlled hyperthermia accli-
mation regimen, despite work rate increasing from day 1
to 5. Consequently, this approach could have greater
real-world application and relevance to athletes and
coaches training with heart rate, rather than with body
core temperature. Moreover, the controlled intensity
regimen may offer a greater cardiovascular adaptation
impulse based on the level of strain targeted.

Of note, it has been suggested that natural heat accli-
matization may provide more complete and specific adap-
tations than artificial heat acclimation (Edholm, 1966).
Given the complexity of competitive sports and the influ-
ence of various factors (e.g., strategy, terrain, pacing) on
performance, heat acclimation in a laboratory may indeed
not adequately replicate certain sport-specific responses
(Bergeron et al., 2012). Furthermore, in a performance
setting, each athlete is required to perform optimally and
the adaptations related to heat acclimation might differ
between athletes. Racinais et al. (2012) observed large
interindividual variations in the responses to a heat accli-
matization training camp in high-level soccer players.
Some players experienced a reduction in running activity
during a match played in the heat (43 °C) after acclima-
tization, whereas those with the “best acclimatization
responses” were able to maintain their running activity,
relative to a match played in temperate conditions

(21 °C). The authors noted that changes in performance
were correlated with changes in hematocrit from pre- to
post-acclimatization during a heat-response test. It was
suggested that this parameter might be a good indicator of
the short-term heat acclimatization responses of team-
sport athletes (Racinais et al., 2012, 2014) and potentially
useful in estimating acclimation level (Bergeron et al.,
2012). In endurance sports, interindividual variation in
the magnitude of increase in !VO2max noted after acclima-
tion may represent a strong indicator of aerobic perfor-
mance improvement.

Decay
Heat acclimation is transient and gradually disappears if
not maintained by continued repeated heat exposure. The
heart rate improvement, which develops rapidly during
acclimation, is also lost more rapidly than thermoregu-
latory responses (Williams et al., 1967; Pandolf et al.,
1977). However, there is no agreement concerning the
rate of decay for heat acclimation. The beneficial effects
of the 14 days of heat acclimatization reported in the
study from Dresoti (1935) appeared to be maintained for
∼1 month. Lind (1964) believed that heat acclimation
might be retained for 2 weeks after the last heat exposure
and then be rapidly lost over the next 2 weeks. Williams
et al. (1967) reported some loss of acclimation in seden-
tary individuals after 1 week, with the percentage loss
being greater with increasing time. By 3 weeks, losses of
nearly 100% for heart rate and 50% for core temperature
were observed. Conversely, Pandolf et al. (1977)
observed greatly attenuated losses in physically trained
individuals, indicating that aerobic fitness and regular
exercise contribute to retaining the benefits of heat accli-
mation for a longer period.

More recently, it was shown that 2 weeks after the
final exposure to heat, a 35% loss of acclimation
occurred in both heart rate and core temperature in indi-
viduals exercising for 60 min at 60% !VO2max in temper-
ate conditions (18 °C; Saat et al., 2005). In contrast,
Weller et al. (2007) demonstrated that following a
10-day acclimation (46 °C and 18% RH) regimen, there
was no decay in core temperature and minimal decay in
heart rate after 12 and 26 days without heat exposure.
During this period, however, regular physical activity
patterns were maintained. Consequently, heat
reacclimation was accomplished in 2 and 4 days, respec-
tively (Weller et al., 2007). A particular feature of this
study was the use of controlled hyperthermia (38.5 °C)
to elicit heat acclimation, which may have enhanced the
benefits of heat acclimation. Notwithstanding, these
observations support the notion that aerobic fitness and
regular exercise are critical during the decay period in
providing stimulus for sustaining adaptation (Pandolf
et al., 1977). It has also been suggested that 1 day of
exercise in the heat is required for every 5 days
spent without heat exposure (Pandolf et al., 1977;
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Taylor, 2000), which challenges the notion that 1 day of
acclimation is lost for every 2 days spent without expo-
sure to heat stress (Givoni & Goldman, 1972). With
short-term heat acclimation, it appears that adaptations
persist for 1 week, but not 2 (Garrett et al., 2009). Future
research endeavors may wish to examine the minimum
intensity, duration, and frequency of exposure required
to maintain the benefits of heat acclimation.

Aerobic fitness

Endurance training in temperate climates reduces physi-
ological strain and increases exercise capacity in
the heat, as endurance-trained athletes exhibit many
of the characteristics of heat-acclimated individuals
(Armstrong & Pandolf, 1988). However, while physical
training by virtue of the thermoregulatory strain can
impart some heat acclimation, the requirement of
profuse sweating and warm skin is critical. Trained indi-
viduals exercising at the same relative intensity, but at a
higher metabolic rate as untrained individuals, experi-
ence a higher rate of heat storage (Mora-Rodriguez
et al., 2010) and fatigue at a similar (Sawka et al., 1992;
Périard et al., 2012a), or higher core temperature
(Cheung & McLellan, 1998; Selkirk & McLellan, 2001).
Hence, adaptations related to training may allow for
greater rates of body heat accumulation before a reduc-
tion in work rate occurs, be it voluntary or involuntary
(Mora-Rodriguez, 2012). In addition, aerobically fit
individuals develop heat acclimation more rapidly than
their less fit counterparts, and high aerobic fitness might
reduce the susceptibility to heat injury/illness (Gardner
et al., 1996). It has been estimated that !VO2max accounts
for approximately 44% of the variability in exercise heat
tolerance, and the number of days required for complete
development of heat acclimation (Pandolf et al., 1977;
Shvartz et al., 1977). However, endurance training alone
does not totally replace the benefits of heat acclimation
produced by a program of exercise in the heat
(Armstrong & Pandolf, 1988).

For endurance training to improve thermoregulatory
responses during exercise in the heat, the exercise train-
ing sessions must produce a substantial elevation in
sweat rate and core temperature (Henane et al., 1977).
Interestingly, however, an elevated aerobic capacity does
not always improve heat tolerance (Avellini et al., 1982).
To achieve improved thermoregulation from endurance
training in temperate climates, either strenuous interval
training or continuous training at an exercise intensity
greater than 50% !VO2max should be employed. Lesser
training intensities produce questionable effects on per-
formance during exercise heat stress (Armstrong &
Pandolf, 1988). The endurance training must last at least
1 week (Nadel et al., 1974) and some authors show that
the best improvements require 8–12 weeks of training
(Armstrong & Pandolf, 1988).

Acclimation to dry and humid environments

Although heat acclimation in a dry environment confers
a substantial advantage in humid heat, the physiological
and biophysical differences between dry and humid heat
lead one to expect that humid heat acclimation would
produce somewhat different physiological adaptations
from dry heat acclimation. Early investigations sup-
ported this premise, indicating that dry heat acclimation
might be better retained than humid heat acclimation
(Bean & Eichna, 1943; Henschel et al., 1943; Robinson
et al., 1943; Lind & Bass, 1963). Fox et al. (1964) com-
pared the effects of acclimation to dry and to humid
heat on the inhibition of sweating using controlled
hyperthermia (∼38.2 °C core temperature). They showed
that most of the improvement in the ability to maintain
higher sweat rates in hot-humid conditions following
acclimation was associated with a diminution of
hidromeiosis. Along with this adaptation, the ability to
evaporate sweat at a rate sufficient to achieve thermal
balance is imperative.

To achieve a high evaporative cooling rate in a humid
environment, it is necessary to overcome the high
ambient water vapor pressure by maintaining either a
higher vapor pressure at the skin (which requires a
higher skin temperature), or a larger wetted skin area, as
compared with what would be necessary in a dry envi-
ronment. Unless core temperature is allowed to rise
along with skin temperatures, the higher skin tempera-
ture must be achieved by increasing core-to-skin thermal
conductance, which requires a higher skin blood flow.
Therefore, one expected difference between acclimation
to humid heat and acclimation to dry heat is for the
former to involve greater circulatory adaptations, to
support higher skin blood flow with minimal circulatory
strain.

Another difference that might be expected between
acclimation to humid heat and dry heat is for humid heat
to enable more efficient use of the skin as an evaporating
surface. Accordingly, it was proposed that humid heat
acclimation allows for a greater portion of sweat produc-
tion to occur at the level of the limbs (Höfler, 1968;
Shvartz et al., 1979; Regan et al., 1996). However,
Patterson et al. (2004b) showed that humid heat accli-
mation does not elicit a preferential sweat redistribution
toward the limbs. Nevertheless, they demonstrated inter-
regional variations in the capacity to increase local sweat
rate, as the increase in forearm sweat rate (117%)
exceeded that at the forehead (47%) and the thigh (42%),
and the increase in chest sweat rate (106%) exceeded the
thigh (Patterson et al., 2004b). Therefore, while humid
heat acclimation does not elicit preferential sweat redis-
tribution toward the limbs, interregional variations in the
capacity to increase local sweat rate do occur.

The magnitude of cross-acclimation that exercise
combined with either dry or humid heat confers during
exercise in either climate has not been fully elucidated.
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Studies indicate that some cross-acclimation can occur
between humid heat and dry heat exposure. Passive dry
heat or passive humid heat acclimation elicited similar
core temperatures during exercise in both hot climates
(Fox et al., 1967). Exercise dry heat acclimation con-
ferred an advantage (over no heat acclimation) during
exercise in humid heat (Bean & Eichna, 1943; Fox et al.,
1967) and vice versa (Eichna et al., 1945). In addition,
Shapiro et al. (1980) reported that exercise (35%
!VO2max) in dry heat elicited equal or greater core tem-

peratures during exercise in humid heat than a matched
WBGT (34 °C) dry heat climate. Unfortunately, that
study did not report pre-acclimation data and employed
only dry heat acclimation. Sawka et al. (1983b) found
that exercise (29% !VO2max) in matched hot-dry and hot-
humid WBGT climates (32 °C) resulted in the attain-
ment of similar core temperatures both before and
after completing the heat acclimation regimen, which
consisted of daily alternating dry heat and humid heat
exposures.

Griefahn (1997) compared the physiological course of
acclimation to humid heat, dry heat, and radiant heat at
equivalent WBGT (33 °C) over a 15-day exercise heat
acclimation program. An unknown number of subjects
participated in one to all three of the heat acclimation
regimens, which were interspersed by at least 52 days.
These investigators reported that humid heat elicited a
more rapid acclimation and less physiological strain (i.e.,
core temperature, heart rate, and sweating rate) than dry
heat exposure. Unfortunately, the experimental design
(i.e., lack of matched groups or crossover testing) did not
allow cross-acclimation effects to be evaluated, nor did
the authors speculate on their findings to that issue.

To our knowledge, no study has directly compared
loss of heat acclimation for matched groups after humid
heat and dry heat acclimation. Pandolf et al. (1977)
acclimated soldiers to dry heat (49 °C, 20%) and studied
their loss of acclimation over 3 weeks. They reported
that 13% and 4% of the core temperature advantages,
and 23% and 29% of the heart rate advantages were lost
after 1 and 3 weeks without exposure, respectively.
Williams et al. (1967) acclimated African miners to
humid heat (35 °C, 80%) and studied their decay over 3
weeks. They reported that 26% and 45% of the core
temperature advantages and 65% and 92% of their heart
rate advantages were lost after 1 and 3 weeks without
exposure to heat stress, respectively. Together, these
studies suggest that heat acclimation decay might occur
more rapidly for humid than dry heat.

Future areas of research

Heat acclimation research and our understanding of the
adaptations related to heat exposure have greatly evolved
since the first observations of Lind (1768). However,
there remain several avenues of research that require
elucidation. These involve the following:

• Developing more athlete-specific heat acclimation
regimens based on performing exercise in the heat at
high intensities.

• Investigating the differences in adaptations between
natural and artificial heat exposure (i.e., acclimatization
vs acclimation), as well as the possible interspacing of
artificial exposure with natural competition-like condi-
tions for optimizing performance.

• Examining the minimum intensity, duration, and fre-
quency of exposure required to maintain the benefits
of heat acclimation.

• Determining whether heat acclimation provides an
ability to tolerate greater body temperatures at exhaus-
tion and/or during prolonged intense exercise.

• Evaluating whether heat acclimation regimens that
allow for permissive dehydration improve the rapidity
and magnitude of heat acclimation adaptations.

• Exploring the mechanism(s) mediating the reduction
in blood and muscle lactate accumulation during
submaximal exercise, and the increase in power output
at lactate threshold following heat acclimation.

• Substantiating the ergogenic benefits of heat acclima-
tion on performance in cool conditions and at altitude,
and developing a better understanding of the mecha-
nisms associated with these improvements.

• Developing our understating of heat shock protein
responses at the intracellular and extracellular level, as
well as the role of epigenetic mechanisms in transcrip-
tional regulation during the development of heat
acclimation.

• Investigating whether a controlled intensity regimen –
exercising at a given level of cardiovascular strain –
elicits a sustained forcing function that allows for
optimal adaptation.

Perspectives

Exercise heat acclimation induces physiological adapta-
tions that improve thermoregulation, attenuate physi-
ological strain, reduce the risk of serious heat illness, and
improve aerobic performance in warm-hot environ-
ments. The adaptations include improved sweating,
improved skin blood flow, lowered body temperatures,
reduced cardiovascular strain, improved fluid balance,
altered metabolism, and enhanced cellular protection.
The magnitude of adaptation depends on the intensity,
duration, frequency, and total number of heat exposures,
as well as the acclimation regimen. Most adaptations to
daily heat exposure develop during the first 4 days, with
the remainder complete by 3 weeks. The adaptations
vary somewhat depending on the exposure to dry or
humid heat. Improved sweat secretion is the most critical
factor in heat acclimation. Earlier onset and higher
sweating rate improves evaporative cooling, which
reduces skin temperature and heat storage. The resultant
lower skin temperature decreases skin blood flow and
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skin venous compliance, shifting blood volume to the
central circulation.

While heat acclimation improves aerobic performance
in the heat, it may also enhance performance in cool or
temperate conditions, and act as a training tool during
specific phases of the competitive season (e.g., pre-
season, taper). The benefits of short-term heat acclima-
tion in particular have been the focus of numerous
studies to determine the effectiveness of such a regimen
in the context of elite endurance and team-sports perfor-
mance. Evidence has emerged that this approach is well
suited for individuals and teams with limited time and
resources, as it allows for performance improvements
related to plasma volume expansion and increased car-
diovascular stability. Research examining the role of
heat acclimation in potentially improving performance
at altitude (i.e., hypoxic conditions) is also emerging;
however, well-controlled studies are required to fully
elucidate this paradigm.

The use of a controlled hyperthermia regimen,
whereby internal and/or external heat load is manipu-
lated, provides a sustained adaptation stimulus and
averts the physiological habituation associated with the
traditional constant work rate exercise heat acclimation
regimen. This approach may thus be better suited to
investigate the mechanisms of heat acclimation and
induce more complete adaptation. Similarly, utilizing a

controlled intensity heat acclimation regimen in which a
specific level of cardiovascular strain (% !VO2max or
lactate threshold) is achieved based on maintaining a
given heart rate, may also provide a sustained forcing
function and allow for maximizing adaptation. Although
this approach needs to be thoroughly investigated, it
offers greater relevance and ease of implementation to
athletes and coaches.

Specificity of exercise and environmental conditions
during competition may need to be replicated during
acclimation to optimize performance when competing.
Thus, additional research is also required to investigate
the difference and specificity of adaptation between
extended natural and artificial heat exposure (i.e.,
acclimatization vs acclimation) and the possible
interspacing of artificial exposure with natural
competition-like conditions. Heat acclimatization may
provide more specific adaptations based on direct expo-
sure to the exercise environmental conditions to be
encountered, including the exercise task, solar radiation,
and terrain/geography.

Key words: Exercise performance, fluid balance, heat
acclimatization, thermal tolerance, thermoregulation.
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